Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.10.631

Degradation Mechanism of MoxW1-xSi2 Heating Elements Fabricated by SHS Process  

Lee, Dong-Won (Material Technology Center, Korea Testing Laboratory)
Lee, Sang-Hun (Material Technology Center, Korea Testing Laboratory)
Kim, Yong-Nam (Material Technology Center, Korea Testing Laboratory)
Lee, Sung-Chul (Production Development Headquarter, Winner Technology)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Oh, Jong-Min (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.10, 2017 , pp. 631-636 More about this Journal
Abstract
The degradation mechanism of $Mo_xW_{1-x}Si_2$ ultrahigh-temperature heating elements fabricated by self-propagating high-temperature synthesiswas investigated. The $Mo_xW_{1-x}Si_2$ specimens (with and without post-annealing) were subjected to ADTs (accelerated degradation tests) at temperatures up to $1,700^{\circ}C$ at heating rates of 3, 4, 5, 7, and $14^{\circ}C/min$. The surface loads of all the specimen heaters were increased with the increase in the target temperature. For the $Mo_xW_{1-x}Si_2$ specimens without annealing, many pores and secondary-phase particles were observed in the microstructure; the surface load increased to $23.9W/cm^2$ at $1,700^{\circ}C$, while the bending strength drastically reduced to 242 MPa. In contrast, the $Mo_xW_{1-x}Si_2$ specimens after post-annealing retained $single-Mo_xW_{1-x}Si_2$ phases and showed superior durability after the ADT. Consequently, it is thought that the formation of microcracks and coarse secondary phases during the ADT are the main causes for the degraded performance of the $Mo_xW_{1-x}Si_2$ heating elements without post-annealing.
Keywords
$MoWSi_2$; Heater; SHS; Post annealing; Degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. La, Q. Xue, and W. Liu, Intermetallics, 11, 541 (2003). [DOI: http://dx.doi.org/10.1016/S0966-9795(03)00041-4]   DOI
2 C. Gras, D. Vrel, E. Gaffet, and F. Bernard, J. Alloys Compd., 314, 240 (2001). [DOI: http://dx.doi.org/10.1016/S0925-8388(00)01221-4]   DOI
3 J. Xu, H. Wu, and B. Li, Int. J. Refract. Met. Hard Mater, 28, 217 (2010). [DOI: https://doi.org/10.1016/j.ijrmhm.2009.10.001]   DOI
4 S. Zamani, H. R. Bakhsheshi-Rad, M.R.A. Kadir, and M.R.M. Shafiee, J. Alloys Compd., 540, 248 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.06.072]   DOI
5 L. Sun and J. Pan, J. Eur. Ceram. Soc., 22, 791 (2002). [DOI: http://dx.doi.org/10.1016/S0955-2219(01)00378-8]   DOI
6 T. Dasgupta, A. K. Bhattacharya, and A. M. Umarji, Solid State Commun., 126, 573 (2003). [DOI: http://dx.doi.org/10.1016/S0038-1098(03)00300-4]   DOI
7 H. Zhang and X. Liu, Int. J. Refract. Met. Hard Mater, 19, 203 (2001). [DOI: http://dx.doi.org/10.1016/S0263-4368(01)00050-6]   DOI
8 B. K. Yen, T. Aizawa, and J. Kihara, Mater. Sci. Eng., A, 220, 8 (1996). [DOI: http://dx.doi.org/10.1016/S0921-5093(96)10430-5]   DOI
9 Y. L. Jeng and E. J. Lavernia, J. Mater. Sci., 29, 2557 (1994). [DOI: https://doi.org/10.1007/bf00356804]   DOI
10 S. W. Jo, G. W. Lee, J. T. Moon, and Y. S. Kim, Acta Mater., 44, 4317 (1996). [DOI: http://dx.doi.org/10.1016/1359-6454(96)00106-1]   DOI
11 S. Zhang and Z. A. Munir, J. Mater. Sci., 26, 3685 (1994). [DOI: https://doi.org/10.1007/bf00557164]
12 S. Paswan, R. Mirta, and S. K. Roy, Mater. Sci. Eng., A, 424, 251 (2006). [DOI: http://dx.doi.org/10.1016/j.msea.2006.03.014]   DOI
13 S. X. Hou, Z. D. Liu, D. Y. Liu, B. R. Li, and N. Q. Zhang, Mater. Sci. Eng., A, 518, 108 (2009). [DOI: http://dx.doi.org/10.1016/j.msea.2009.04.026]   DOI
14 C. G. Mckamey, P. F. Tortorelli, J. H. DeVan, and C. A. Carmichael, J. Mater. Res., 7, 2747 (1992). [DOI: https://doi.org/10.1557/JMR.1992.2747]   DOI
15 K. Hasson, M. Halvarsson, J. E. Tang, R. Pompe, M. Sundberg, and J. E. Svensson, J. Eur. Ceram. Soc., 24, 3559 (2004). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.024]   DOI