DOI QR코드

DOI QR Code

Performance and Durability of PEMFC MEAs Fabricated by Various Methods

PEMFC MEA 제조 방법에 따른 성능 및 내구성

  • Received : 2014.03.07
  • Accepted : 2014.04.12
  • Published : 2014.10.01

Abstract

To study the effects of fabrication methods on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a Dr blade method, a spray method, screen print method and screen print + spray method. The performance of single cells assembled with the prepared MEAs were initially measured and compared. Electrode accelerated stress testing (AST) involving a potentiostatic step-wave with 10 s at 0.6 V followed by 30 s at 0.9 V was applied to test durability of MEAs. Before and after 6,000cycles of the AST, I-V curves, impedance spectra, cyclic voltammograms, linear sweep voltammetry (LSV) and transmission electron microscope (TEM) were measured. Under the operating conditions, the Dr Blde MEA exhibited the highest initial performance. After electrode accelerated stress testing, screen print + spray MEA showed lowest degradation rate.

고분자 전해질 연료전지의 성능과 내구성에 미치는 막 전극 접합체(MEA) 제조방법의 영향에 대해 연구하기 위해 닥터 블레이드 방법, 스프레이 방법, 스크린 프린트 방법 그리고 스크린 프린트+스프레이 방법에 의해 MEA를 제조하였다. 제조된 MEA를 체결한 단위전지의 성능을 측정해 각 MEA의 초기 성능을 비교하였다. 10초간 0.6V 일정전압 유지 후 0.9 V에서 10초간 유지하는 전극 열화 가속 시험(AST)을 각 MEA 적용해 내구성을 시험하였다. 전극 열화 가속 시험 6,000 사이클 전 후 I-V 곡선, 임피던스, 순환 전압측정법(CV), 선형쓸음 전기량측정법(LSV), 투과전자현미경(TEM) 등을 측정하였다. 닥터 블레이드 방법에 의해 제조한 MEA의 초기 성능이 제일 높았고, 스크린 프린트+스프레이 방법에 의해 제조한 MEA가 제일 낮은 열화 속도를 보였다.

Keywords

References

  1. Endoh, E., Terazono, S., Widjaja, H. and Takimoto, Y., "Degradation Study of MEA for PEMFCs under Low Humidity Conditions," Electrochem. Solid-state Lett, 7, A209-A211(2004). https://doi.org/10.1149/1.1739314
  2. Prasanna, M., Cho, E. A., Lim, T. H. and Oh, I. H., "Effects of MEA Fabrication Method on Durability of Polymer Electrolyte Membrane Fuel Cells," Electrochim. Acta, 53, 5434-5441(2008). https://doi.org/10.1016/j.electacta.2008.02.068
  3. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  4. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  5. Wilson, M. S., Garzon, F. H., Sickafus K. E. and Gottesfeld, S., "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electochem. Soc, 140, 2872(1993). https://doi.org/10.1149/1.2220925
  6. Cheng, X., Chen, L., Peng, C., Chen, Z., Zhang, Y. and Fan, Q., "Catalyst Microstructure Examination of PEMFC Membrane Electrode Assemblies vs. Time," J. Electrochem. Soc. 151, A48(2004). https://doi.org/10.1149/1.1625944
  7. Schulze, M., Schneider, A. and Gulzow, E., "Alteration of the Distribution of the Platinum Catalyst in Membrane-electrode Assemblies During PEFC Operation," J. Power Sources, 127, 213(2004). https://doi.org/10.1016/j.jpowsour.2003.09.016
  8. Xie, J., Wood, D. L., More, K. L., Atanassov, P. and Borupa, R. L., "Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions," J. Electrochem. Soc. 152, A1011(2005). https://doi.org/10.1149/1.1873492
  9. Cheng, T. T. H., Rogers, E., Young, A. P., Ye, S., Colbow, V. and Wessel, S., "Effects of Crossover Hydrogen on Platinum Dissolution and Agglomeration," J. Power Sources, 195, 7985-7988(2011).
  10. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc. 141, 2659-2668(1994). https://doi.org/10.1149/1.2059162
  11. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membraneelectrode-assembly," J. Power Sources, 159, 461-467(2006). https://doi.org/10.1016/j.jpowsour.2005.10.111
  12. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The Stability of Pt/C Catalyst in $H_3PO_4$/PBI PEMFC During High Temperature Life Test," J. Power Sources, 164, 126-133(2006).
  13. Rajalakshmi, N. and Dhathathreyan, K. S., "Catalyst Layer in PEMFC Electrodes - Fabrication, Characterisation and Analysis," Chem. Eng. J., 129, 31-40(2007). https://doi.org/10.1016/j.cej.2006.10.035

Cited by

  1. Preparation of Porous Nanostructures Controlled by Electrospray vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.627
  2. 황화수소 피독이 고분자전해질 연료전지에 미치는 영향과 회복기법 vol.55, pp.1, 2014, https://doi.org/10.9713/kcer.2017.55.1.107
  3. 고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.296