• Title/Summary/Keyword: Abutment fracture

Search Result 96, Processing Time 0.024 seconds

Evaluation of Fatigue Fracture Life for TiN Coated Abutment Screw in Dental Implant

  • Choe, Han-Cheol;Chung, Chae-Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.115-116
    • /
    • 2012
  • In this study, fitness and fatigue test were performed to estimate the coating effects of abutment screw for implant system after fatigue test. The purpose of this study was to investigate fatigue fracture phenomena of dental implant fixture used titanium nitride coated abutment screw under cyclic load.

  • PDF

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE IMPLANT FRACTURES

  • Kim Yang-Soo;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.295-313
    • /
    • 2006
  • Statement of problem. Higher fracture rates were reported for Branemark implants placed in the maxilla and for 3.75 mm diameter implants installed in the posterior region. Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element analysis and to compare different diameter of fixtures according to the level of alveolar bone resorption. Material and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for the 3i implant systems. Models were processed by the software programs HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a regular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0 mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm in length each with a cementation type abutment and titanium alloy screw. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized as 650 N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600 N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the fixtures according to different alveola. bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss). Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView programs were used for post processing. Results. The results from our experiment are as follows: 1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal force. 2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-creasing of the implant diameter. 3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter implant was possible. 4. With increasing of bending stress by loading offset, fracture of the abutment screw was possible.

Fracture Strength Analysis of Monolithic Zirconia Ceramic by Abutment Shape (지르코니아 단일구조 전부도재관의 지대치 형태에 따른 파절 강도)

  • Kim, Won-Young;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • Purpose: This study was performed fracture strength test by conducted change of abutment and coping shape for suggesting monolithic all ceramic crown which has thin thickness and superior strength of the occlusal surface. Methods: The specimens on the four kinds abutment was made according to thickness of occlusal surface and angle of axis surface. And All ceramic coping specimens of 6 different kinds was made by the CAD/CAM Method. Compression strength test using the UTM and the verification of compression-stress situation using the 3D finite element method were conducted under optimum conditions. Results: 516C specimen was showed the strongest compression-fracture strength, followed by 516FR, 516F45, specimens. Did not show significant differences between 516FR and 516F45. 516C of the universal testing machine the specimen's surface that are within the vertical load is small, finite element method of a uniformly distributed load, so the value received suggests otherwise. Conclusion: In conclusion, abutments of monolithic ziconia ceramic when having a same thickness of the occlusal, as the angle of occlusal edge is small, the stress is well dispersed and it can endure well in the fracture.

Prosthodontic treatment for cases with poor implant position and orientation (임플란트의 위치와 방향이 좋지 않은 증례의 보철 치료)

  • Noh, Kwantae
    • The Journal of the Korean dental association
    • /
    • v.58 no.9
    • /
    • pp.583-589
    • /
    • 2020
  • If the implant is planted in the wrong position or direction, it is disadvantageous for stress distribution, and it is easy to cause complications such as screw loosening, abutment fracture, and implant fracture. If the position or orientation of the implant is not good, efforts should be made to minimize the problem through proper implant prosthetic treatment. In this article, the prosthetic method for facilitating future maintenance in cases with poor implant placement or orientation will be presented.

  • PDF

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

Effect of intra-crown cantilever on mechanical strength of internal conical joint type implant (치관 내 캔틸레버 양에 따른 내측 연결 형태 임플란트의 기계적 강도에 대한 연구)

  • Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Jeon, Young-Chan;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.360-367
    • /
    • 2015
  • Purpose : The purpose of this study was to evaluate the effect of amount of cantilever in intra-crown according to implant fixture position on mechanical strength of internal conical joint type implant. Materials and Methods : Internal conical joint type implant fixture, abutment screw, abutment was connected and gold alloy prostheses were fabricated and cemented on abutment. For fatigue fracture test, the specimens were loaded to the 350 N, 2,000,000 cycle on 3, 4, 5, and 6 mm off-center of gold alloy prostheses. The fracture pattern of implant component was observed. Results : No fatigue fracture found on 3 and 4 mm group. But initial crack pattern found on 3 specimens of 4 mm group. Fatigue fracture found on all specimens of 5 mm group. But complete fracture was not observed. One specimen of 6 mm group fracture completely. Implant fixture fracture wax not observed. Conclusion : The mechanical failure of implant prostheses increased with the loading area farther from center of implant fixture. To reduce mechanical problem of internal joint type implant, surgical and prosthetic consideration is needed.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Standardizing the evaluation criteria on treatment outcomes of mandibular implant overdentures: a systematic review

  • Kim, Ha-Young;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.325-332
    • /
    • 2014
  • PURPOSE. The aim of this review was to analyze the evaluation criteria on mandibular implant overdentures through a systematic review and suggest standardized evaluation criteria. MATERIALS AND METHODS. A systematic literature search was conducted by PubMed search strategy and hand-searching of relevant journals from included studies considering inclusion and exclusion criteria. Randomized clinical trials (RCT) and clinical trial studies comparing attachment systems on mandibular implant overdentures until December, 2011 were selected. Twenty nine studies were finally selected and the data about evaluation methods were collected. RESULTS. Evaluation criteria could be classified into 4 groups (implant survival, peri-implant tissue evaluation, prosthetic evaluation, and patient satisfaction). Among 29 studies, 21 studies presented implant survival rate, while any studies reporting implant failure did not present cumulative implant survival rate. Seventeen studies evaluating peri-implant tissue status presented following items as evaluation criteria; marginal bone level (14), plaque Index (13), probing depth (8), bleeding index (8), attachment gingiva level (8), gingival index (6), amount of keratinized gingiva (1). Eighteen studies evaluating prosthetic maintenance and complication also presented following items as evaluation criteria; loose matrix (17), female detachment (15), denture fracture (15), denture relining (14), abutment fracture (14), abutment screw loosening (11), and occlusal adjustment (9). Atypical questionnaire (9), Visual analog scales (VAS) (4), and Oral Health Impact Profile (OHIP) (1) were used as the format of criteria to evaluate patients satisfaction in 14 studies. CONCLUSION. For evaluation of implant overdenture, it is necessary to include cumulative survival rate for implant evaluation. It is suggested that peri-implant tissue evaluation criteria include marginal bone level, plaque index, bleeding index, probing depth, and attached gingiva level. It is also suggested that prosthetic evaluation criteria include loose matrix, female detachment, denture fracture, denture relining, abutment fracture, abutment screw loosening, and occlusal adjustment. Finally standardized criteria like OHIP-EDENT or VAS are required for patient satisfaction.

Development of a Sealing-Type Abutment for Implant and the Performance Evaluation via Structural Analysis (임플란트용 실링 어버트먼트의 개발 및 구조해석을 통한 성능분석)

  • Kim, Jeong Min;Hong, Dae Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.769-775
    • /
    • 2016
  • Currently, dental implants are widely used as artificial teeth due to their good chewing performance and long life cycle. Generally, a dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, a gap is often generated at the interfacial surface between the abutment and the fixture, and it results in some deterioration such as loosening of the fastening screw, dental retraction and fixture fracture. To enhance the sealing performance for coping with such problems, this study proposes a new sealing-type abutment having a number of grooves along the conical surface circumference, and it carries out finite element analysis in consideration of the external chewing force and pretension between the abutment and the fixture. The result shows that the proposed sealing-type abutment shows an enhanced sealing performance in terms of the contact pressure in comparison with a conventional abutment.

The effect of heat to remove cement on implant titanium abutment and screw (시멘트 제거를 위해 가한 열이 임플란트 티타늄 지대주와 나사에 미치는 영향)

  • Yi, Hyo-Gyoung;Gil, Ki-Sung;Lee, Jung-Jin;Ahn, Seung-Geun;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.179-187
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effect of heat applied to disintegrate cement on the removal torque value and fracture strength of titanium abutment and abutment screw. Materials and methods: Implants, titanium abutments and abutment screws were prepared for each 20 piece. Implant abutments and screws were classified as the control group in which no heat was applied and the experimental group was heated in a vacuum furnace to $450^{\circ}C$ for 8 minutes and cooled in air. The abutments and screws were connected to the implants with 30 Ncm tightening torque at interval 10 minutes and the removal torque value was measured 15 minutes later. And the fracture strength of abutment screw was measured using universal testing machine. Results: The mean removal torque value was $27.84{\pm}1.07Ncm$ in the control group and $26.55{\pm}1.56Ncm$ in the experimental group and showed statistically significant difference (P < .05). The mean fracture strength was $731.47{\pm}39.46N$ in the control group and $768.58{\pm}46.73N$ in the experimental group and showed statistically no significant difference (P > .05). Conclusion: The heat applied for cement disintegration significantly reduced the removal torque value of the abutment screw and did not significantly affect fracture strength of the abutment screw. Therefore, in the case of applying heat to disintegrate cement it is necessary to separate the abutment screw or pay attention to the reuse of the heated screw. However further studies are needed to evaluate the clinical reuse of the heated screw.