DOI QR코드

DOI QR Code

The effect of heat to remove cement on implant titanium abutment and screw

시멘트 제거를 위해 가한 열이 임플란트 티타늄 지대주와 나사에 미치는 영향

  • Yi, Hyo-Gyoung (Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science, Chonbuk National University) ;
  • Gil, Ki-Sung (Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science, Chonbuk National University) ;
  • Lee, Jung-Jin (Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science, Chonbuk National University) ;
  • Ahn, Seung-Geun (Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science, Chonbuk National University) ;
  • Seo, Jae-Min (Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science, Chonbuk National University)
  • 이효경 (전북대학교 치과대학 치과보철학교실 및 구강생체과학연구소) ;
  • 길기성 (전북대학교 치과대학 치과보철학교실 및 구강생체과학연구소) ;
  • 이정진 (전북대학교 치과대학 치과보철학교실 및 구강생체과학연구소) ;
  • 안승근 (전북대학교 치과대학 치과보철학교실 및 구강생체과학연구소) ;
  • 서재민 (전북대학교 치과대학 치과보철학교실 및 구강생체과학연구소)
  • Received : 2018.01.09
  • Accepted : 2018.05.30
  • Published : 2018.07.31

Abstract

Purpose: The purpose of this study was to investigate the effect of heat applied to disintegrate cement on the removal torque value and fracture strength of titanium abutment and abutment screw. Materials and methods: Implants, titanium abutments and abutment screws were prepared for each 20 piece. Implant abutments and screws were classified as the control group in which no heat was applied and the experimental group was heated in a vacuum furnace to $450^{\circ}C$ for 8 minutes and cooled in air. The abutments and screws were connected to the implants with 30 Ncm tightening torque at interval 10 minutes and the removal torque value was measured 15 minutes later. And the fracture strength of abutment screw was measured using universal testing machine. Results: The mean removal torque value was $27.84{\pm}1.07Ncm$ in the control group and $26.55{\pm}1.56Ncm$ in the experimental group and showed statistically significant difference (P < .05). The mean fracture strength was $731.47{\pm}39.46N$ in the control group and $768.58{\pm}46.73N$ in the experimental group and showed statistically no significant difference (P > .05). Conclusion: The heat applied for cement disintegration significantly reduced the removal torque value of the abutment screw and did not significantly affect fracture strength of the abutment screw. Therefore, in the case of applying heat to disintegrate cement it is necessary to separate the abutment screw or pay attention to the reuse of the heated screw. However further studies are needed to evaluate the clinical reuse of the heated screw.

목적: 본 연구의 목적은 임플란트 고정성 보철물의 시멘트 소환을 위해 가한 열이 임플란트 티타늄 지대주 및 지대주 나사의 풀림토크와 파절강도에 미치는 영향을 조사하는 것이다. 재료 및 방법: 임플란트와 티타늄 지대주 및 지대주 나사를 20개씩 준비하였다. 지대주와 나사는 가열하지 않은 것을 대조군으로, 진공소성로에서 $450^{\circ}C$까지 8분간 가열 후 공기 중에서 냉각한 것을 실험군으로 분류하였다. 임플란트에 지대주 및 나사를 연결하고 30 Ncm의 힘으로 10분 간격으로 2회의 조임력을 가하고 15분 후 풀림토크를 측정하였고 만능시험기를 이용하여 지대주 나사의 파절강도를 측정하였다. 결과: 평균 풀림토크는 대조군에서 $27.84{\pm}1.07Ncm$, 실험군에서 $26.55{\pm}1.56Ncm$이었고 통계적으로 유의한 차이를 보였다 (P < .05). 평균 파절강도는 대조군에서 $731.47{\pm}39.46N$, 실험군에서 $768.58{\pm}46.73N$이었고 통계적으로 유의한 차이를 보이지 않았다 (P > .05). 결론: 임플란트 고정성 보철물의 시멘트 소환을 위해 가한 열이 티타늄 지대주 나사의 풀림토크를 유의하게 감소시켰고 파절강도에는 영향을 주지 않았다. 따라서 시멘트 소환을 위해 보철물 및 지대주의 조립체에 열을 가하는 경우에는 지대주 나사를 미리 빼내어 따로 보관하거나 부득이하게 열을 가한 지대주 나사는 재사용에 주의가 필요할 것으로 사료되나 임상적인 재사용 여부를 평가하기 위해서는 추가적인 연구가 필요하다.

Keywords

References

  1. Misch CE. Contemporary implant dentistry. 3rd ed. St. Louis; Mosby Elsevier; 2008.
  2. Chung CH, Son MK. The classification and comparison of implant prosthesis according to types of retention. Part I: screw retained prosthesis vs cement retained prosthesis. Implantology 2010;14:138-51.
  3. Kim JH, Yun BH, Jang JE, Huh JB, Jeong CM. Retrievable SCP (screw-cement prosthesis) implant-supported fixed partial dentures in a fully edentulous patient: a case report. J Korean Acad Prosthodont 2012;50:318-23. https://doi.org/10.4047/jkap.2012.50.4.318
  4. Chung CH, Son MK. The classification and comparison of implant prosthesis according to types of retention. Part II: Screw-cement retained prosthesis. Implantology 2011;15:58- 70.
  5. Taylor TD. Prosthodontic problems and limitations associated with osseointegration. J Prosthet Dent 1998;79:74-8. https://doi.org/10.1016/S0022-3913(98)70197-0
  6. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-7.
  7. Pauletto N, Lahiffe BJ, Walton JN. Complications associated with excess cement around crowns on osseointegrated implants: a clinical report. Int J Oral Maxillofac Implants 1999;14:865-8.
  8. Arora A, Upadhayaya V, Mittal S, Goyal I. Techniques for retrievability of cement retained implant prosthesis. J Dent Implant 2014;4:161-4. https://doi.org/10.4103/0974-6781.140888
  9. Aparicio C. A new method for achieving passive ft of an interim restoration supported by Brånemark implants: a technical note. Int J Oral Maxillofac Implants 1995;10:614-8.
  10. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res 2008;19:119-30. https://doi.org/10.1111/j.1600-0501.2007.01453.x
  11. Shin SY. Prosthodontic problems and complications associated with osseointegration. J Dent Rehabil Appl Sci 2015;31:349-57. https://doi.org/10.14368/jdras.2015.31.4.349
  12. Hong JY, Chae GJ, Jung UW, Kim CS, Cho KS, Chai JK, Kim CK, Choi SH. Implant-related complications and treatment of the ailing implants. Implantology 2007;11:44-54.
  13. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 5th ed. St. Louis, USA; Elsevier; 2016.
  14. Krishnan V, Tony Thomas C, Sabu I. Management of abutment screw loosening: review of literature and report of a case. J Indian Prosthodont Soc 2014;14:208-14. https://doi.org/10.1007/s13191-013-0330-2
  15. Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Svediene O. Influence of the temperature on the cement disintegration in cement-retained implant restorations. Stomatologija 2012;14:114-7.
  16. Veiga C, Davim JP, Loureiro AJR. Properties and applications of titanium alloys: A brief review. Rev Adv Mater Sci 2012;32:133-48.
  17. ISO 14801:2016. Dentistry implants - dynamic fatigue test for endosseous dental implants. Geneva (Switzerland): International Organization for Standardization; 2016.
  18. Leelanarathiwat K, Asvanund P, Anunmana C. Removal torque of screw-and cement-retained cantilever flxed prosthesis on angled abutment after cyclic loading. Mahidol Dent J 2016;36:269-77.
  19. Gracis S, Michalakis K, Vigolo P, Vult von Steyern P, Zwahlen M, Sailer I. Internal vs. external connections for abutments/reconstructions: a systematic review. Clin Oral Im- plants Res 2012;23:202-16. https://doi.org/10.1111/j.1600-0501.2012.02556.x
  20. Theoharidou A, Petridis HP, Tzannas K, Garefs P. Abutment screw loosening in single-implant restorations: a systematic review. Int J Oral Maxillofac Implants 2008;23:681-90.
  21. Im SM, Kim DG, Park CJ, Cha MS, Cho LR. Biomechanical considerations for the screw of implant prosthesis: A literature review. J Korean Acad Prosthodont 2010;48:61-8. https://doi.org/10.4047/jkap.2010.48.1.61
  22. Al Jabbari YS, Fournelle R, Ziebert G, Toth J, Iacopino AM. Mechanical behavior and failure analysis of prosthetic retain- ing screws after long-term use in vivo. Part 4: Failure analysis of 10 fractured retaining screws retrieved from three patients. J Prosthodont 2008;17:201-10. https://doi.org/10.1111/j.1532-849X.2007.00291.x
  23. Gupta S, Gupta H, Tandan A. Technical complications of implant-causes and management: A comprehensive review. Natl J Maxillofac Surg 2015;6:3-8. https://doi.org/10.4103/0975-5950.168233
  24. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36.
  25. Winkler S, Ring K, Ring JD, Boberick KG. Implant screw mechanics and the settling effect: overview. J Oral Implantol 2003;29:242-5. https://doi.org/10.1563/1548-1336(2003)029<0242:ISMATS>2.3.CO;2
  26. Kyung KY, Cha HS, Lee JH. The effect of a titanium socket with a zirconia abutment on screw loosening after thermocy- cling in an internally connected implant: a preliminary study. J Dent Rehabil Appl Sci 2017;33:114-8. https://doi.org/10.14368/jdras.2017.33.2.114
  27. Cantwell A, Hobkirk JA. Preload loss in gold prosthesis- retaining screws as a function of time. Int J Oral Maxillofac Implants 2004;19:124-32.
  28. Huh YH, Cho LR, Kim DG, Park CJ. Comparison of implant torque controllers using detorque value. J Dent Rehabil Appl Sci 2010;26:419-32.
  29. Lang LA, Kang B, Wang RF, Lang BR. Finite element analy- sis to determine implant preload. J Prosthet Dent 2003;90: 539-46. https://doi.org/10.1016/j.prosdent.2003.09.012
  30. Stüker RA, Teixeira ER, Beck JC, da Costa NP. Preload and torque removal evaluation of three different abutment screws for single standing implant restorations. J Appl Oral Sci 2008;16:55-8. https://doi.org/10.1590/S1678-77572008000100011
  31. Hong SY, Markus I, Jeong WC. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 2001;41:2245-60. https://doi.org/10.1016/S0890-6955(01)00041-4
  32. Zherebtsov S, Salishchev G, Galeyev R, Maekawa K. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformatioALRUDn. Mater Trans 2005;46:2020-5. https://doi.org/10.2320/matertrans.46.2020
  33. Ming Q, Yongzhen Z, Jun Z, Jianheng Y. Dry friction characteristics of Ti-6Al-4V alloy under high sliding velocity. J Wuhan Univ Technol Mat Sci 2007;22:582. https://doi.org/10.1007/s11595-006-4582-0
  34. Revankar GD, Shetty R, Rao SS, Gaitonde VN. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process. J Mater Res Technol 2017;6:13-32. https://doi.org/10.1016/j.jmrt.2016.03.007
  35. Swarnakar AK, van der Biest O, Baufeld B. Young’s modulus and damping in dependence on temperature of Ti-6Al-4V components fabricated by shaped metal deposition. J Mater Sci 2011;46:3802-11. https://doi.org/10.1007/s10853-011-5294-1
  36. da Rocha SS, Adabo GL, Henriques GE, Nóbilo MA. Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments. Braz Dent J 2006;17:126-9. https://doi.org/10.1590/S0103-64402006000200008
  37. Meyers MA, Benavides HAC, Bruhl SP, Colorado HA, Dalgaard E, Elias CN, Figueiredo RB, Garcia Rincon O, Kawasaki M, Langdeon TG, Mangalaraja RV, Marroquin MCG, da Cunha Rocha A, Schoenung J, Costa e Silva A, Wells M, Yang W. (Eds.) Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer; 2017. p. 381-91.
  38. Liu G, Zhu D, Shang Jian. Enhanced fatigue crack growth resistance at elevated temperature in TiC/Ti-6Al-4V composite: Microcrack-induced crack closure. Metall Mater Trans A 1995;26:159-66.
  39. Lee KA, Kim YK, Yu JH, Park SH, Kim MC. Effect of heat treatment on microstructure and impact toughness of Ti-6Al- 4V manufactured by selective laser melting process. Arch Metall Mater 2017;62:1341-6. https://doi.org/10.1515/amm-2017-0205
  40. Tan BF, Tan KB, Nicholls JI. Critical bending moment of implant-abutment screw joint interfaces: effect of torque levels and implant diameter. Int J Oral Maxillofac Implants 2004;19:648-58.