• Title/Summary/Keyword: Absorbed power

Search Result 191, Processing Time 0.025 seconds

Computation of Temperature Rising by Absorbed Power Radiated from a Portable Phone (휴대폰 전파인 인제 흡수전력량과 온도 상승량 산출)

  • 이승학;김채영;강승진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.409-426
    • /
    • 2001
  • Absorbed power of the human head radiated from a 900 MHz portable phone and temperature rise are computed using FDTD(Finite-Difference Time-Domain) method. For this computation the 5 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 8.15 cm, and the output power of a phone is 600 mW. Under the predetermined model the distribution of 1 g, 10 g averaged SAR and temperature rise rate over the human head are calculated, from which it was found that the position of maximum SAR is near at the head skin surface, not deep places far into the head. The position of the highest temperature is located far from the head skin more than that of the maximum SAR occured. The averaged SAR and temperature along the distance between the head and phone are calculated according to seperation distance between the head and phone.

  • PDF

Power Absorption Measurements during NMR Experiments

  • Felix-Gonzalez, N.;Urbano-Bojorge, A.L.;de Pablo, C. Sanchez-L;Ferro-Llanos, V.;del Pozo-Guerrero, F.;Serrano-Olmedo, J.J.
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • The heating produced by the absorption of radiofrequency (RF) has been considered a secondary undesirable effect during MRI procedures. In this work, we have measured the power absorbed by distilled water, glycerol and egg-albumin during NMR and non-NMR experiments. The samples are dielectric and examples of different biological materials. The samples were irradiated using the same RF pulse sequence, whilst the magnetic field strength was the variable to be changed in the experiments. The measurements show a smooth increase of the thermal power as the magnetic field grows due to the magnetoresistive effect in the copper antenna, a coil around the probe, which is directly heating the sample. However, in the cases when the magnetic field was the adequate for the NMR to take place, some anomalies in the expected thermal powers were observed: the thermal power was higher in the cases of water and glycerol, and lower in the case of albumin. An ANOVA test demonstrated that the observed differences between the measured power and the expected power are significant.

Empirical Modeling on the Breaking Characteristics of Power Current Limited Fuse (전력용 백업퓨우즈 차단특성 모델링)

  • Lee Sei-Hyun;Lee Bvung-Sung;Han Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.391-396
    • /
    • 2005
  • In this paper the modeling of interrupting characteristics of a high voltage current limiting fuse to be used in a power distribution system is introduced. In order to reduce the level of energy which can be absorbed by equipment during fault current flow, a high voltage current limiting fuse can generate a high voltage at the fuse terminals. Consequently it is necessary to model and analyze precisely the voltage and current variation during a CL fuse action. The characteristics of CL fuse operation modeled by electrical components have been performed with less than 6 [$\%$] errors. So the fuse designer or manufacturer can estimate the characteristics of CL fuse operation by using this modeling. The Electro Magnetic Transient Program (EMTP) is used to develop the modeling.

Characteristics calculation on radio frequency power transfer in a planar inductively coupled plasma source (평면형 유도결합 플라즈마 장치에서의 RF 전력 전달 특성 계산)

  • 이정순;정태훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.368-375
    • /
    • 1999
  • The Maxwell equation and the transformer equivalent-circuit model are applied to a radio frequency planar inductively coupled plasma. The spatial distribution of the vector potential, the magnetic field, and the electric field are obtained analytically. As a result, the plasma current, the mutual inductance between the coil and the plasma, and the self inductance of plasma are found to increase with increasing skin depth. The spatial distribution of absorbed power has maximum where the antenna coil exists, and has a similar profile to that of the induced electric field. The power transfer efficiency is found to increase with increasing gas pressure before a saturation around p+ 20mTorr, while it shows an increase with the plasma density before a slight decrease around a density of $5\times10^{11}/\textrm{cm}^3$.

  • PDF

Novel Flyback ZVS Multi Resonant Converter (새로운 플라이백 영전압 스위칭 다중공진형 컨버터)

  • Kim, Ki-Young;Youn, Dae-Young;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1065-1066
    • /
    • 2006
  • The multi-resonant converter minimizes the parasitic oscillations using the resonant tank circuit absorbed parasitic reactances in a converter. So the converter can be operated at a high frequency and it provides a high efficiency because the switching power losses are reduced effectively. However, the high resonant voltage stress of semiconductors leads to the conduction loss. In this paper, it is proposed the novel flyback multi-resonant converter. The converter input is divided by two series input capacitors. And also the resonant stress is reduced to 2-3 times input voltage without any complexity and it provides the various circuit schemes in lots of applications. The proposed converters are verified through simulation and experiment.

  • PDF

Barrier-Transition Cooling in LED

  • Kim, Jedo
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.44-51
    • /
    • 2013
  • This paper proposes and analyzes recycling of optical phonons emitted by nonradiative decay, which is a major thermal management concern for high-power light emitting diodes (LED), by introducing an integrated, heterogeneous barrier cooling layer. The cooling is proportional to the number of phonons absorbed per electron overcoming the potential barrier, while the multi-phonon absorption rate is inversely proportional to this number. We address the theoretical treatment of photon-electron-phonon interaction/transport kinetics for optimal number of phonons (i.e., barrier height). We consider a GaN/InGaN LED with a metal/AlGaAs/GaAs/metal potential barrier and discuss the energy conversion rates. We find that significant amount of heat can be recycled by the barrier transition cooling layer.

X-ray Absorption Spectroscopy of a Poly Sodium 4-Styrensulfonate Intercalated Graphite Oxide Electrode

  • Jeong, Hye-Gyeong;Park, Byeong-Gyu;Kim, Jae-Yeong;No, Han-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.393-393
    • /
    • 2011
  • We investigated the electronic structures of a poly sodium 4-styrensulfonate intercalated graphite oxide (PSSGO) electrode and a precursor graphite oxide (GO) electrode using X-ray absorption spectroscopy (XAS). Both electrodes were obtained from electrochemical cells. We found that in the C K-edge XAS spectra the ${\pi}^*$ state intensity originating from the sp2 hybridization of graphite decreases predominantly in the graphite oxide and PSSGO electrodes. This indicates that the negatively charged electrolyte ion (BF4-) is absorbed onto the electrodes and is transferred to the ${\pi}^*$ state of the both electrodes. The analysis of their F K-edge spectra reveals that more BF4- ions were found in the PSSGO electrode than in the graphite oxide electrode. This indicates that more electrolyte ions are absorbed in the PSSGO than in the graphite oxide electrode. We argue that this is the main reason why PSSGO cells have higher capacitance, higher energy density, and higher power density when compared to the graphite oxide cells. We also found that BF4- is the primary working ion that can be inserted into the interlayers of the PSSGO electrode.

  • PDF

Protection Characteristics of Two-Stage Cascade SPD Systems (2단 종속 SPD시스템의 보호특성)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.95-103
    • /
    • 2013
  • Protection of the electrical and electronic equipment against surges in low voltage AC power distribution systems is based on wide applications of surge protective devices(SPDs). Cascade application of SPDs located at the service entrance of a building and near sensitive equipment is intended to ensure the optimal voltage protection level and energy sharing among cascade SPDs. In this paper, when surges impinge at the service entrance of the building of interest, the protection characteristics of two-stage cascade SPD systems were investigated. The influence of the distance between the upstream and downstream SPDs on the voltage protection level and energy sharing of the two-stage cascade SPD systems were analyzed experimentally. It was found that the energy sharing of two-stage cascade SPD systems strongly depends on the distance between the two SPDs and the component of SPD. As the distance between the two SPDs increases, the energy absorbed by the upstream SPD increases while the energy absorbed by the downstream SPD decreases. Consequently, it is desirable to select the upstream and downstream SPDs having the proper energy capability with due consideration of the distance between the two SPDs.

Hydrogen Effect on the Oxidation of Zr-Alloy Claddings under High Temperature (수소화물에 의한 Zr 합금의 고온산화 가속효과)

  • Jung, Yunmock;Ha, Sungwoo;Park, Kwangheon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • The operation method of nuclear power plants is currently changing to high burn-up and long period that can enhance economics and efficiency of the plant. Since nuclear plant operation environment has been becoming severe, the amount of absorbed hydrogen also has increased. Absorbed hydrogen can be fatal securing safety of nuclear fuel cladding in case of Loss of Coolant Accidents(LOCA). In order to examine the impact of hydride on high-temperature oxidation, high-temperature oxidation experiment was performed on normal Zry-4 cladding and on Zry-4 cladding where hydrogen is charged in air pressure steam atmosphere under the $950^{\circ}C$ and $1000^{\circ}C$. According to the results, while oxidation acceleration due to charged hydrogen was not observed prior to breakaway oxidation creation, oxidation began to accelerate in cladding where hydrogens charged as soon as the breakaway oxidation started. If so much hydrogen are charged in the cladding, equiaxial monoclinic phase to unstable of stress is formed and it is presumed that oxidation is accelerated because nearby stress caused a crack in equiaxial phase, and that makes corrosion resistance decline sharply.

Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge

  • Lee, Juhyeok;Kim, Byoungkwan;Kang, Jaehyuk;Kang, Jaeeun;Kim, Won-Seok;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.465-479
    • /
    • 2020
  • Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.