Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20181510300870).
References
- Y. Lee, D. Hwang, K. Lee, G. Jeong, and J. Moon, "Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste", J. Nucl. Fuel Cycle Waste Technol., 11(4), 271-280 (2013). https://doi.org/10.7733/JNFCWT-K.2013.11.4.271
- International Atomic Energy Agency. Managing low radioactivity material for the decommissioning for nuclear facilities technical report series No. 462, International Atomic Energy Agency, Vienna (2008).
- K. Jung, N. Jeong, Y. Moon, M. Jeong, and J. Park, "Prediction of Radionuclide Inventory for the Low- and Intermediate-Level Radioactive Waste Disposal Facility by the Radioactive Waste Classification", J. Nucl. Fuel Cycle Waste Technol., 14(1) , 63-78 (2016). https://doi.org/10.7733/JNFCWT.2016.14.1.63
- Y. Xie and J. Zhang, "Corrosion and deposition on the secondary circuit of steam generators", J Nucl Sci Technol, 53(10), 1455-1466 (2016). https://doi.org/10.1080/00223131.2016.1152923
- W. Jeong, Y. Choi, S. Son, and S. Hong, "Development of a sludge lancing equipment and FOSAR technology", NET, 35(14) (2003).
- J.G. Hwan, K.J. Jung, S.T. Baik, U.S. Chung, K.W. Lee, S.K. Park, D.G. Lee, and H.R. Kim. Solidification of slurry waste with ordinary portland cement, Atomic Energy Research Institute Report, KAERI/RR-2302/2002 (2002).
- D. Fytili and A. Zabaniotou, "Utilization of sewage sludge in EU application of old and new methods-A review", Renew. Sust. Energ. Rev., 12(1), 116-140 (2008). https://doi.org/10.1016/j.rser.2006.05.014
- R. Abdel Rahman, H. Ibrahium, and Y. Hung, "Liquid Radioactive Wastes Treatment: A Review", Water, 3(2), 551-565 (2011). https://doi.org/10.3390/w3020551
- M. Ko, Y. Kim, Y. Kim, and K. Kim, "Assessment of Cobalt Removal from Radioactive Liquid Waste Using Electrocoagulation", Econ. Environ. Geol., 51(2), 177-183 (2018). https://doi.org/10.9719/EEG.2018.51.2.177
- G. Kim, W. Jang, S. Jang, J. Im, D. Hong, C. Seo, and J. Shon, "Characterization of Cement Solidification for Enhancement of Cesium Leaching Resistance", J. Nucl. Fuel Cycle Waste Technol., 16(2), 183-193 (2018). https://doi.org/10.7733/jnfcwt.2018.16.2.183
- D. Koo, H. Sung, S. Kim, G. Kim, and J. Choi, "Characteristics of Cement Solidification of Metal Hydroxide Waste", NET, 49(1), 165-171 (2017). https://doi.org/10.1016/j.net.2016.08.010
- S. Sundaram, C. Chung, K. Parker, M. Kimura, M. Valenta, C. Burns, S. Pitman, W. Um, J. Chun, and J. Westsik. Secondary Waste Form Development and Optimization-Cast Stone, Pacific Northwest National Labaratory Report, PNNL-20159 (2011).
- M. Reigel, B. Pickenheim, and W. Daniel, Process Formulation and Curing Conditions that Affect Saltstone Properties, Savannah River Site Report, SRNL-STI-2012-00558 (2012).
- J. Ahn, W. Kim, and W. Um, "Development of metakaolin-based geopolymer for solidification of sulfaterich HyBRID sludge waste", J. Nucl. Mater., 518, 247-255 (2019). https://doi.org/10.1016/j.jnucmat.2019.03.008
- T. Bayoumi and M. Tawfik, "Immobilization of sulfate waste simulate in polymer-cement composite based on recycled expanded polystyrene foam waste: evaluation of the final waste form under freeze-thaw treatment", Polym. Compos., 38(4), 637-645 (2017). https://doi.org/10.1002/pc.23622
- W. Lee, T. Cheng, Y. Ding, K. Lin, S. Tsao, and C. Huang, "Geopolymer technology for the solidification of simulated ion exchange resins with radionuclides", J. Environ. Manage., 235, 19-27 (2019). https://doi.org/10.1016/j.jenvman.2019.01.027
- C. Coumes and S. Courtois, "Cementation of a lowlevel radioactive waste of complex chemistry Investigation of the combined action of borate,chloride, sulfate and phosphate on cement hydration using response surface methodology", Cem Concr Res, 33(3), 305-316 (2003). https://doi.org/10.1016/S0008-8846(02)00943-2
- B. Kim and S. Lee, "Review on characteristics of metakaolin-based geopolymer and fast setting", J. Korean Ceram. Soc., 57(4), 368-377 (2020). https://doi.org/10.1007/s43207-020-00043-y
- I. Lecomte, C. Henrist, M. Liegeois, F. Maseri, A. Rulmont, and R. Cloots, "(Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement", J. Eur. Ceram. Soc., 26(16), 3789-3797 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.021
- S. Louati, W. Hajjaji, S. Baklouti, and B. Samet, "Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay", Appl Clay Sci,101, 60-67 (2014). https://doi.org/10.1016/j.clay.2014.07.015
- S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad, "The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste", Constr Build Mater., 157, 534-545 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.102
- Michael I. Ojovan, Handbook of advanced radioactive waste conditioning technologies, 1st ed., Woodhead Publishing Limited, Cambridge (2011).
- P. Lichvar, M. Rozloznik, and S. Sekely. Behaviour of aluminosilicate inorganic matrix SIAL during and after solidification of radioactive sludge and radioactive spent reins and their mixtures, International Atomic Energy Agency Report, IAEA-TECDOC-CD-1701 (2013).
- H. Xu, W. Gong, L. Syltebo, W. Lutze, and I. Pegg, "DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution", J. Hazard. Mater., 278, 34-39 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.070
- ASTM, C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA (2018).
- I. Kaya, E. Kartal, and D. Senol, "Synthesis and characterization of polyphenol derived from Schiff bases containing methyl and carboxyl groups in the structure", Des Monomers Polym, 18(6), 524-535 (2015). https://doi.org/10.1080/15685551.2015.1041084
- S. Yaseen, G. Yiseen, and Z. Li, "Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide", ACS Omega., 46(6),10160-10170 (2019).
- H. Alshamsi and B. Hussein, "Synethesis, characterization and photocatalysis of γ-Fe2O3 nanoparticles for degradation of cibacron brilliant yellow 3G-P", Asian J. Chem., 30(2), 273-279 (2018). https://doi.org/10.14233/ajchem.2018.20888
- D. Saravanakkumar, R. Karthika, S. Ganasaravanan, S. Sivaranjani, S. Pandiarajan, B. Ravikumar, and A. Ayeshamariam, "Synthesis of NiO doped ZnO/MWCNT Nanocomposite and its charecterization for photocatalytic & antimicrobial applications", J. Appl. Phys., 10, 73-83 (2018). https://doi.org/10.1063/1.1707244
- A. Aouissi, Z. Al-Othman, and H. Bayahia, "Ethyl benzene dehydrogenation in the presence of carbon dioxide over Fe2O3-Cr2O3 catalyst", Asian J. Chem., 22(6), 4873-4879 (2010).
- I. Alves, J. Santos, D. Viegas, E. Marques, C. Lacerda, L. Zhang, J. Zhang, and A. Marques, "Nanoparticles of Fe2O3 and Co3O4 as efficient electrocatalysts for oxygen reduction reaction in acid medium", J. Braz. Chem. Soc., 30(12), 2681-2690 (2019).
- M. Oner, K. Erdogdu, and A. Gunlu, "Effect of components fineness on strength of blast furnace slag cement", Cem Concr Res, 33(4), 463-469 (2003). https://doi.org/10.1016/S0008-8846(02)00713-5
- Z. Yao, X. Ji, P. Sarker, J. Tang, L. Ge, M. Xia, and Y. Xi, "A comprehensive review on the applications of coal fly ash", Earth Sci Rev, 141, 105-121 (2015). https://doi.org/10.1016/j.earscirev.2014.11.016
- Z. Lili, M. Yasir, and M. Wahab, "Solidification of radioactive waste resins using cement mixed with organic material", AIP Conf Proc, 1659(1), 050006 (2015).
- J. Bullard, H. Jennings, R. Livingston, A. Nonat, G. Scherer, J. Schweitzer, K. Scrivener, and J. Thomas, "Mechanisms of cement hydration", Cem Concr Res, 41(12), 1208-1223 (2011). https://doi.org/10.1016/j.cemconres.2010.09.011
- M. Fridrichova, K. Dvorak, D. Gazdic, J. Mokra, and K. Kulisek, "Thermodynamic stability of ettringite formed by hydration of Ye'elimate clinker", Adv. Mater. Sci. Eng., 2016 (2016).
- G. Kakali, S. Tsivilis, E. Aggeli, and M. Bati, "Hydration products of C3A, C3S and portland cement in the presence of CaCO3", Cem Concr Res, 30(7), 1073-1077 (2000). https://doi.org/10.1016/S0008-8846(00)00292-1
- H. Lee and J. Hwang, "Ettringite/Thaumasite formation, stability and their effect on deterioration of concrete", J. Miner. Soc. Korea, 16, 75-90 (2003).
- G. Moscher, B. Lothenbach, F. Winnefeld, A. Ulrich, R. Figi, and R. Kretzschmar, "Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6]2(SO4)3·26H2O)", Cem Concr Res, 39(6), 482-489 (2009). https://doi.org/10.1016/j.cemconres.2009.03.001
- G. Moschner, B. Lothenbach, J. Rose, A. Ulrich, R. Figi, and R. Kretzschmar, "Solubility of Fe-ettringite (Ca6[Fe(OH)2(SO4)3·26H2O]", Geochimica et Cosmochimica Acta, 72(1), 1-18 (2008). https://doi.org/10.1016/j.gca.2007.09.035
- C. Fan, B. Wang, and T. Zhang, "Review on cement stabilization /solidification of municipal solid waste incineration fly ash", Adv. Mater. Sci. Eng., 2018, (2018).
- X. Huang, R. Zhuang, F. Muhammad, L. Yu, Y. Shiau, and D. Li, "Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials", Chemosphere, 168, 300-308 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.067
- Y. Lee, B. Min, D. Hwang, and J. Moon, "The characterization of cement waste form for final disposal of decommissioning concrete wastes", Ann. Nucl. Energy, 77, 294-299 (2015). https://doi.org/10.1016/j.anucene.2014.11.027
- F. Glasser, "Fundamental aspects of cement solidification and stabilisation", J. Hazard. Mater., 52(2-3), 51-170 (1997). https://doi.org/10.1016/S0304-3894(96)01805-5
- Y. Yoda, Y. Aikawa, and E. Sakai, "Analysis of the hydration reaction of the portland cement composition based on the hydration equation", J. Ceram. Soc. JAPAN, 125(3), 130-134 (2017). https://doi.org/10.2109/jcersj2.16290
- S. Kang, S. Na, S. Lee, M. Song, W. Lee, and Y. Song, "Effects of ettringite formation on the compressive strength of mortar during activation of blast furnace slag without ordinary portland cement", Mater. Res. Innov., 19(sup8), S8-545-S8-548 (2015).
- P. Jiahui, Z. Jianxin, and Q. Jindong, " The mechanism of the formation and transformation of ettringite", J. Wuhan Univ. Technol. Mater. Sci. Ed., 21(3), 158-161 (2006). https://doi.org/10.1007/BF02840908
- X. Wei, F. Ming, D. Li, L. Chen, and Y. Liu, "Influence of water content on mechanical strength and microstructure of alkali-activated fly ash/GGBFS mortars cured at cold and polar regions", Materials, 12(1), 138, (2020). https://doi.org/10.3390/ma12010138
- S. Lee, E. An, and Y. Cho, "Effect of foaming agent content on the apparent density and compressive strength of lightweight geopolymers", J Rec Const Resources, 4(4), 363-370 (2016).
- T. Luukkonen, M. Sarkkinen, K. Kemppainen, J. Ramo, and U. Lassi, "Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate", Appl Clay Sci, 119, 266-276 (2016). https://doi.org/10.1016/j.clay.2015.10.027
- S. Yan, P. He, D. Jia, X. Duan, Z. Yang, S. Wang, and Y. Zhou, "Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states", RSC Adv., 7(22), 13498-13508 (2017). https://doi.org/10.1039/C6RA26340B
- C. Rees, J. Provis, G. Lukey, and J. Deventer, "In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation", Langmuir., 23(17), 9076-9082 (2007). https://doi.org/10.1021/la701185g