DOI QR코드

DOI QR Code

Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge

  • Received : 2020.09.21
  • Accepted : 2020.11.04
  • Published : 2020.12.30

Abstract

Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20181510300870).

References

  1. Y. Lee, D. Hwang, K. Lee, G. Jeong, and J. Moon, "Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste", J. Nucl. Fuel Cycle Waste Technol., 11(4), 271-280 (2013). https://doi.org/10.7733/JNFCWT-K.2013.11.4.271
  2. International Atomic Energy Agency. Managing low radioactivity material for the decommissioning for nuclear facilities technical report series No. 462, International Atomic Energy Agency, Vienna (2008).
  3. K. Jung, N. Jeong, Y. Moon, M. Jeong, and J. Park, "Prediction of Radionuclide Inventory for the Low- and Intermediate-Level Radioactive Waste Disposal Facility by the Radioactive Waste Classification", J. Nucl. Fuel Cycle Waste Technol., 14(1) , 63-78 (2016). https://doi.org/10.7733/JNFCWT.2016.14.1.63
  4. Y. Xie and J. Zhang, "Corrosion and deposition on the secondary circuit of steam generators", J Nucl Sci Technol, 53(10), 1455-1466 (2016). https://doi.org/10.1080/00223131.2016.1152923
  5. W. Jeong, Y. Choi, S. Son, and S. Hong, "Development of a sludge lancing equipment and FOSAR technology", NET, 35(14) (2003).
  6. J.G. Hwan, K.J. Jung, S.T. Baik, U.S. Chung, K.W. Lee, S.K. Park, D.G. Lee, and H.R. Kim. Solidification of slurry waste with ordinary portland cement, Atomic Energy Research Institute Report, KAERI/RR-2302/2002 (2002).
  7. D. Fytili and A. Zabaniotou, "Utilization of sewage sludge in EU application of old and new methods-A review", Renew. Sust. Energ. Rev., 12(1), 116-140 (2008). https://doi.org/10.1016/j.rser.2006.05.014
  8. R. Abdel Rahman, H. Ibrahium, and Y. Hung, "Liquid Radioactive Wastes Treatment: A Review", Water, 3(2), 551-565 (2011). https://doi.org/10.3390/w3020551
  9. M. Ko, Y. Kim, Y. Kim, and K. Kim, "Assessment of Cobalt Removal from Radioactive Liquid Waste Using Electrocoagulation", Econ. Environ. Geol., 51(2), 177-183 (2018). https://doi.org/10.9719/EEG.2018.51.2.177
  10. G. Kim, W. Jang, S. Jang, J. Im, D. Hong, C. Seo, and J. Shon, "Characterization of Cement Solidification for Enhancement of Cesium Leaching Resistance", J. Nucl. Fuel Cycle Waste Technol., 16(2), 183-193 (2018). https://doi.org/10.7733/jnfcwt.2018.16.2.183
  11. D. Koo, H. Sung, S. Kim, G. Kim, and J. Choi, "Characteristics of Cement Solidification of Metal Hydroxide Waste", NET, 49(1), 165-171 (2017). https://doi.org/10.1016/j.net.2016.08.010
  12. S. Sundaram, C. Chung, K. Parker, M. Kimura, M. Valenta, C. Burns, S. Pitman, W. Um, J. Chun, and J. Westsik. Secondary Waste Form Development and Optimization-Cast Stone, Pacific Northwest National Labaratory Report, PNNL-20159 (2011).
  13. M. Reigel, B. Pickenheim, and W. Daniel, Process Formulation and Curing Conditions that Affect Saltstone Properties, Savannah River Site Report, SRNL-STI-2012-00558 (2012).
  14. J. Ahn, W. Kim, and W. Um, "Development of metakaolin-based geopolymer for solidification of sulfaterich HyBRID sludge waste", J. Nucl. Mater., 518, 247-255 (2019). https://doi.org/10.1016/j.jnucmat.2019.03.008
  15. T. Bayoumi and M. Tawfik, "Immobilization of sulfate waste simulate in polymer-cement composite based on recycled expanded polystyrene foam waste: evaluation of the final waste form under freeze-thaw treatment", Polym. Compos., 38(4), 637-645 (2017). https://doi.org/10.1002/pc.23622
  16. W. Lee, T. Cheng, Y. Ding, K. Lin, S. Tsao, and C. Huang, "Geopolymer technology for the solidification of simulated ion exchange resins with radionuclides", J. Environ. Manage., 235, 19-27 (2019). https://doi.org/10.1016/j.jenvman.2019.01.027
  17. C. Coumes and S. Courtois, "Cementation of a lowlevel radioactive waste of complex chemistry Investigation of the combined action of borate,chloride, sulfate and phosphate on cement hydration using response surface methodology", Cem Concr Res, 33(3), 305-316 (2003). https://doi.org/10.1016/S0008-8846(02)00943-2
  18. B. Kim and S. Lee, "Review on characteristics of metakaolin-based geopolymer and fast setting", J. Korean Ceram. Soc., 57(4), 368-377 (2020). https://doi.org/10.1007/s43207-020-00043-y
  19. I. Lecomte, C. Henrist, M. Liegeois, F. Maseri, A. Rulmont, and R. Cloots, "(Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement", J. Eur. Ceram. Soc., 26(16), 3789-3797 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.021
  20. S. Louati, W. Hajjaji, S. Baklouti, and B. Samet, "Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay", Appl Clay Sci,101, 60-67 (2014). https://doi.org/10.1016/j.clay.2014.07.015
  21. S. Yaseri, G. Hajiaghaei, F. Mohammadi, M. Mahdikhani, R. Farokhzad, "The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste", Constr Build Mater., 157, 534-545 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.102
  22. Michael I. Ojovan, Handbook of advanced radioactive waste conditioning technologies, 1st ed., Woodhead Publishing Limited, Cambridge (2011).
  23. P. Lichvar, M. Rozloznik, and S. Sekely. Behaviour of aluminosilicate inorganic matrix SIAL during and after solidification of radioactive sludge and radioactive spent reins and their mixtures, International Atomic Energy Agency Report, IAEA-TECDOC-CD-1701 (2013).
  24. H. Xu, W. Gong, L. Syltebo, W. Lutze, and I. Pegg, "DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution", J. Hazard. Mater., 278, 34-39 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.070
  25. ASTM, C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA (2018).
  26. I. Kaya, E. Kartal, and D. Senol, "Synthesis and characterization of polyphenol derived from Schiff bases containing methyl and carboxyl groups in the structure", Des Monomers Polym, 18(6), 524-535 (2015). https://doi.org/10.1080/15685551.2015.1041084
  27. S. Yaseen, G. Yiseen, and Z. Li, "Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide", ACS Omega., 46(6),10160-10170 (2019).
  28. H. Alshamsi and B. Hussein, "Synethesis, characterization and photocatalysis of γ-Fe2O3 nanoparticles for degradation of cibacron brilliant yellow 3G-P", Asian J. Chem., 30(2), 273-279 (2018). https://doi.org/10.14233/ajchem.2018.20888
  29. D. Saravanakkumar, R. Karthika, S. Ganasaravanan, S. Sivaranjani, S. Pandiarajan, B. Ravikumar, and A. Ayeshamariam, "Synthesis of NiO doped ZnO/MWCNT Nanocomposite and its charecterization for photocatalytic & antimicrobial applications", J. Appl. Phys., 10, 73-83 (2018). https://doi.org/10.1063/1.1707244
  30. A. Aouissi, Z. Al-Othman, and H. Bayahia, "Ethyl benzene dehydrogenation in the presence of carbon dioxide over Fe2O3-Cr2O3 catalyst", Asian J. Chem., 22(6), 4873-4879 (2010).
  31. I. Alves, J. Santos, D. Viegas, E. Marques, C. Lacerda, L. Zhang, J. Zhang, and A. Marques, "Nanoparticles of Fe2O3 and Co3O4 as efficient electrocatalysts for oxygen reduction reaction in acid medium", J. Braz. Chem. Soc., 30(12), 2681-2690 (2019).
  32. M. Oner, K. Erdogdu, and A. Gunlu, "Effect of components fineness on strength of blast furnace slag cement", Cem Concr Res, 33(4), 463-469 (2003). https://doi.org/10.1016/S0008-8846(02)00713-5
  33. Z. Yao, X. Ji, P. Sarker, J. Tang, L. Ge, M. Xia, and Y. Xi, "A comprehensive review on the applications of coal fly ash", Earth Sci Rev, 141, 105-121 (2015). https://doi.org/10.1016/j.earscirev.2014.11.016
  34. Z. Lili, M. Yasir, and M. Wahab, "Solidification of radioactive waste resins using cement mixed with organic material", AIP Conf Proc, 1659(1), 050006 (2015).
  35. J. Bullard, H. Jennings, R. Livingston, A. Nonat, G. Scherer, J. Schweitzer, K. Scrivener, and J. Thomas, "Mechanisms of cement hydration", Cem Concr Res, 41(12), 1208-1223 (2011). https://doi.org/10.1016/j.cemconres.2010.09.011
  36. M. Fridrichova, K. Dvorak, D. Gazdic, J. Mokra, and K. Kulisek, "Thermodynamic stability of ettringite formed by hydration of Ye'elimate clinker", Adv. Mater. Sci. Eng., 2016 (2016).
  37. G. Kakali, S. Tsivilis, E. Aggeli, and M. Bati, "Hydration products of C3A, C3S and portland cement in the presence of CaCO3", Cem Concr Res, 30(7), 1073-1077 (2000). https://doi.org/10.1016/S0008-8846(00)00292-1
  38. H. Lee and J. Hwang, "Ettringite/Thaumasite formation, stability and their effect on deterioration of concrete", J. Miner. Soc. Korea, 16, 75-90 (2003).
  39. G. Moscher, B. Lothenbach, F. Winnefeld, A. Ulrich, R. Figi, and R. Kretzschmar, "Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6]2(SO4)3·26H2O)", Cem Concr Res, 39(6), 482-489 (2009). https://doi.org/10.1016/j.cemconres.2009.03.001
  40. G. Moschner, B. Lothenbach, J. Rose, A. Ulrich, R. Figi, and R. Kretzschmar, "Solubility of Fe-ettringite (Ca6[Fe(OH)2(SO4)3·26H2O]", Geochimica et Cosmochimica Acta, 72(1), 1-18 (2008). https://doi.org/10.1016/j.gca.2007.09.035
  41. C. Fan, B. Wang, and T. Zhang, "Review on cement stabilization /solidification of municipal solid waste incineration fly ash", Adv. Mater. Sci. Eng., 2018, (2018).
  42. X. Huang, R. Zhuang, F. Muhammad, L. Yu, Y. Shiau, and D. Li, "Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials", Chemosphere, 168, 300-308 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.067
  43. Y. Lee, B. Min, D. Hwang, and J. Moon, "The characterization of cement waste form for final disposal of decommissioning concrete wastes", Ann. Nucl. Energy, 77, 294-299 (2015). https://doi.org/10.1016/j.anucene.2014.11.027
  44. F. Glasser, "Fundamental aspects of cement solidification and stabilisation", J. Hazard. Mater., 52(2-3), 51-170 (1997). https://doi.org/10.1016/S0304-3894(96)01805-5
  45. Y. Yoda, Y. Aikawa, and E. Sakai, "Analysis of the hydration reaction of the portland cement composition based on the hydration equation", J. Ceram. Soc. JAPAN, 125(3), 130-134 (2017). https://doi.org/10.2109/jcersj2.16290
  46. S. Kang, S. Na, S. Lee, M. Song, W. Lee, and Y. Song, "Effects of ettringite formation on the compressive strength of mortar during activation of blast furnace slag without ordinary portland cement", Mater. Res. Innov., 19(sup8), S8-545-S8-548 (2015).
  47. P. Jiahui, Z. Jianxin, and Q. Jindong, " The mechanism of the formation and transformation of ettringite", J. Wuhan Univ. Technol. Mater. Sci. Ed., 21(3), 158-161 (2006). https://doi.org/10.1007/BF02840908
  48. X. Wei, F. Ming, D. Li, L. Chen, and Y. Liu, "Influence of water content on mechanical strength and microstructure of alkali-activated fly ash/GGBFS mortars cured at cold and polar regions", Materials, 12(1), 138, (2020). https://doi.org/10.3390/ma12010138
  49. S. Lee, E. An, and Y. Cho, "Effect of foaming agent content on the apparent density and compressive strength of lightweight geopolymers", J Rec Const Resources, 4(4), 363-370 (2016).
  50. T. Luukkonen, M. Sarkkinen, K. Kemppainen, J. Ramo, and U. Lassi, "Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate", Appl Clay Sci, 119, 266-276 (2016). https://doi.org/10.1016/j.clay.2015.10.027
  51. S. Yan, P. He, D. Jia, X. Duan, Z. Yang, S. Wang, and Y. Zhou, "Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states", RSC Adv., 7(22), 13498-13508 (2017). https://doi.org/10.1039/C6RA26340B
  52. C. Rees, J. Provis, G. Lukey, and J. Deventer, "In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation", Langmuir., 23(17), 9076-9082 (2007). https://doi.org/10.1021/la701185g