• Title/Summary/Keyword: Ability of the mathematics problem-solving

Search Result 293, Processing Time 0.021 seconds

A Case study of Metacognitive Strategy Training on Mathematical Problem Solving (메타인지적 활동의 훈련을 통한 문제해결 과정에서의 사고 과정 분석 사례 연구)

  • Lee, Bong-Ju;Ko, Ho-Kyoung
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.291-305
    • /
    • 2009
  • The purpose of this article is to formulate the base that mathematical thinking power can be improved through activating the metacognitive ability of students in the math problem solving process. The guidance material for activating the metacognitive ability was devised based on a body of literature and various studies. Two high school students used it in their math problem solving process. They reported that their own mathematical thinking power was improved in this process. And they showed that the necessary strategies and procedures for math problem solving can be monitored and controled by analyzing their own metacognition in the mathematical thinking process. This result suggests that students' metacognition does play an important role in the mathematical thinking process.

  • PDF

The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude (공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과)

  • Shin, Keun-Mi;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.401-420
    • /
    • 2010
  • The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.

  • PDF

A Study on the Practical Use of Fairy-tales in Elementary Mathematics Education (초등수학에서 동화의 활용 방안 탐색)

  • 김상룡
    • Education of Primary School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2002
  • Fairy-tales give students opportunities to build connections between a problem-solving situation and mathematics as well as to communicate solutions through writing, symbols, and diagrams. Therefore, the purpose of this paper is to introduce how to use fairy-tales in elementary mathematics classroom in order to develope student's mathematical concepts and process in terms of the following areas: ⑴ reconstructing literature ⑵ understanding concepts ⑶ problem posing activity. To be useful, mathematics should be taught in contexts that are meaningful and relevant to learners. Therefore using fairy-tales as a vehicle to teach mathematics gives students a chance to develope mathematics understanding in a natural, meaningful way, and to enhance problem posing and problem solving ability. Further, future study will continue to foster how fairy-tales literatures will enhance children's mathematics knowledge and influence on their mathematics performance.

  • PDF

수학 영재 판별 도구 개발 - 수학 창의적 문제 해결력 검사를 중심으로 -

  • 김홍원
    • Journal of Gifted/Talented Education
    • /
    • v.8 no.2
    • /
    • pp.69-89
    • /
    • 1998
  • The purpose of this study is to develop a test which can be used in identification of the gifted students in the area of mathematics. This study was carried out for two years from 1996. Mathematical giftedness is, in this study, regarded as a result of interaction of mathematical thinking ability, mathematical creativity, mathematical task committment, background knowledge. This study presumed that mathematical thinking ability is composed of seven thinking abilities: intuitive insights, ability for information organization, ability for visualization, ability for mathematical abstraction, inferential thinking ability(both inductive and deductive thinking abilities), generalization and application ability, and reflective thinking. This study also presupposed that mathematical creativity is composed of 3 characteristics: fluency, flexibility, originality. The test for mathematical creative problem solving ability was developed for primary, middle, and high school students. The test is composed of two parts: the first part is concentrated more on divergent thinking, while the second part is more on convergent thinking. The major targets of the test were the students whose achievement level in mathematics belong to top 15~20% in each school. The goodness of the test was examined in the aspects of reliability, validity, difficulty, and discrimination power. Cronbach $\alpha$ was in the range of .60~.75, suggesting that the test is fairly reliable. The validity of the test was examined through the correlation among the test results for mathematical creative problem solving ability, I. Q., and academic achievement scores in mathematics and through the correlation between the scores in the first part and the scores in the second part of the test for mathematical creative problem solving ability. The test was found to be very difficult for the subjects. However, the discrimination power of the test was at the acceptable level.

  • PDF

Elementary Gifted Students' Creative Problem Solving Through Fermi Estimate (초등 영재의 페르미 추정을 통한 창의적 문제해결력 분석)

  • Heo, Jung-In;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • This study explored the characteristics of elementary gifted students' creative problem-solving skills combining creativity and problem-solving ability based on their work on Fermi estimation problems. The analysis revealed that gifted students exhibited strong logical validity and breadth but showed some weaknesses in divergent thinking abilities (fluency, flexibility, originality).

Word Problem with Figures Solving Ability and Error of Boys and Girls - with middle school 3rd grade students - (남녀학생들의 도형 문장제 해결 오류 및 해결력에 대한 비교 분석 - 중학교 3학년 대상으로 -)

  • Oh, Jeong-Yoon;Ro, Young-Soon
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.3
    • /
    • pp.353-367
    • /
    • 2007
  • The purpose of this study was to examine what errors students made in solving word problems with figures and to compare the problem-solving abilities of boys and girls for each type of word problems with figures. It's basically meant to provide information on effective teaching-learning methods about world problems with figures that were given the greatest weight among different sorts of word problems. The findings of the study were as fellows: First, there was no difference between the boys and girls in the types of error they made. Both groups made the most errors due to a poor understanding of sentences, and they made the least errors of making the wrong expression. And the students who gave no answers outnumbered those who made errors. Second, as for problem-solving ability, the boys outperformed the girls in problem solving except variable problems. There was the greatest gap between the two in solving combining problems. Third, they made the average or higher achievement in solving the types of problems that were included much in the textbooks, and made the least achievement in relation to the types of problems that were handled least often in the textbooks.

  • PDF

The Correlation between information Processing type and mathematical communication abilities / word Problem solving abilities (정보처리 양식에 따른 수학적 의사소통 능력과 문장제 해결능력과의 관계)

  • 이종희;박선욱
    • School Mathematics
    • /
    • v.4 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • The purpose of this study is to examine the The correlation between information processing types and mathematical communication abilities / word problem solving abilities. The results obtained are as follows: 1 Simultaneous/continuous information process types showed statistically high correlation with mathematical communication abilities. However, the correlation between simultaneous information process and mathematical communication abilities is a little higher than the correlation between continuous information process and mathematical communication abilities. 2. There is a high correlation between mathematical communication abilities and word problem solving abilities. Especially, speaking ability is much more correlated with four factors of word problem solving than reading, writing and listening, Through this study, we can conclude that information process types should be consider ed in order to improve mathematical communication abilities and mathematical communication abilities is essential in word problem solving.

  • PDF

A study on the improvement of ability of a creative solving mathematical problem (수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로-)

  • 박형빈;서경식
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • In this paper, we study the methods of improving an ability of a creative solving mathematical problem belonging to an educational system which every province office of education has adopted for the mathematically talented students. Especially, we give an attention on a preferential reaction in teaching styles according to student's LQ., the relationship between student's LQ. and an ability of creative solving mathematical problems, and seeking for an appropriative teaching methods of the improvement ability of a creative solving problem. As results, we have the followings; 1. The group having excellent students who have a higher intelligential ability prefers inquiry learning which is composed of several sub-groups to a teacher-centered instruction. 2. The correlation coefficient between student's LQ. and an ability creative solving of mathematical is not high. 3. Although the contents and the model of thematic inquiry learning don't have a great influence on the divergent thinking (ex. fluency, flexibility, originality), they affect greatly the convergent thinking - a creative mathematical - problem solving ability. Accordingly, our results show that we should use a variety of mathematical teaching materials apart from our regular textbooks used in schools to improve a creative mathematical problem solving ability in the process of thematic inquiry learning. Also we can see that an inquiry learning which stimulates student's participation and discussion can be a desirable model in the thematic mathematical classroom activities.

  • PDF

The Effect of the Belief Systems on the Problem Solving Performance of the Middle School Students (중학생의 신념체계가 수학적 문제해결 수행에 미치는 영향)

  • Kwon Se Hwa;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.109-119
    • /
    • 1992
  • The primary purpose of the present study is to provide the sources to improve the mathematical problem solving performance by analyzing the effects of the belief systems and the misconceptions of the middle school students in solving the problems. To attain the purpose of this study, the reserch is designed to find out the belief systems of the middle school students in solving the mathematical problems, to analyze the effects of the belief systems and the attitude on the process of the problem solving, and to identify the misconceptions which are observed in the problem solving. The sample of 295 students (boys 145, girls 150) was drawn out of 9th grade students from three middle schools selected in the Kangdong district of Seoul. Three kinds of tests were administered in the present study: the tests to investigate (1) the belief systems, (2) the mathematical problem solving performance, and (3) the attitude in solving mathematical problems. The frequencies of each of the test items on belief systems and attitude, and the scores on the problem solving performance test were collected for statistical analyses. The protocals written by all subjects on the paper sheets to investigate the misconceptions were analyzed. The statistical analysis has been tabulated on the scale of 100. On the analysis of written protocals, misconception patterns has been identified. The conclusions drawn from the results obtained in the present study are as follows; First, the belief systems in solving problems is splited almost equally, 52.95% students with the belief vs 47.05% students with lack of the belief in their efforts to tackle the problems. Almost half of them lose their belief in solving the problems as soon as they given. Therefore, it is suggested that they should be motivated with the mathematical problems derived from the daily life which drew their interests, and the individual difference should be taken into account in teaching mathematical problem solving. Second. the students who readily approach the problems are full of confidence. About 56% students of all subjects told that they enjoyed them and studied hard, while about 26% students answered that they studied bard because of the importance of the mathematics. In total, 81.5% students built their confidence by studying hard. Meanwhile, the students who are poor in mathematics are lack of belief. Among are the students accounting for 59.4% who didn't remember how to solve the problems and 21.4% lost their interest in mathematics because of lack of belief. Consequently, the internal factor accounts for 80.8%. Thus, this suggests both of the cognitive and the affective objectives should be emphasized to help them build the belief on mathematical problem solving. Third, the effects of the belief systems in problem solving ability show that the students with high belief demonstrate higher ability despite the lack of the memory of the problem solving than the students who depend upon their memory. This suggests that we develop the mathematical problems which require the diverse problem solving strategies rather than depend upon the simple memory. Fourth, the analysis of the misconceptions shows that the students tend to depend upon the formula or technical computation rather than to approach the problems with efforts to fully understand them This tendency was generally observed in the processes of the problem solving. In conclusion, the students should be taught to clearly understand the mathematical concepts and the problems requiring the diverse strategies should be developed to improve the mathematical abilities.

  • PDF

The Effects of Reflective Problem Posing Activities on Students' Problem Solving Ability and Attitudes toward Mathematics (반성적 문제 만들기 활동이 초등학생들의 문제해결력 및 수학적 태도에 미치는 영향)

  • Bae, Jun-Hwan;Park, Mangoo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.2
    • /
    • pp.311-331
    • /
    • 2016
  • The purpose of this study was to analyze mathematical errors and the effects of reflective problem posing activities on students' mathematical problem solving abilities and attitudes toward mathematics. We chose two 5th grade groups (experimental and control groups) to conduct this research. From the results of this study, we obtained the following conclusions. First, reflective problem posing activities are effective in improving students' problem solving abilities. Students could use extended capability of selecting a condition to address the problem to others in the activities. Second, reflective problem posing activities can improve students' mathematical willpower and promotes reflective thinking. Reflective problem posing activities were conducted before and after the six areas of mathematics. Also, we examined students' mathematical attitudes of both the experimental group and the control group about self-confidence, flexibility, willpower, curiosity, mathematical reflection, and mathematical value. In the reflective problem posing group, students showed self check on their problems solving activities and participated in mathematical discussions to communicate with others while participating mathematical problem posing activities. We suggested that reflective problem posing activities should be included in the development of mathematics curriculum and textbooks.