• Title/Summary/Keyword: Abelian ring

Search Result 65, Processing Time 0.02 seconds

An Alternative Perspective of Near-rings of Polynomials and Power series

  • Shokuhifar, Fatemeh;Hashemi, Ebrahim;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.437-453
    • /
    • 2022
  • Unlike for polynomial rings, the notion of multiplication for the near-ring of polynomials is the substitution operation. This leads to somewhat surprising results. Let S be an abelian left near-ring with identity. The relation ~ on S defined by letting a ~ b if and only if annS(a) = annS(b), is an equivalence relation. The compressed zero-divisor graph 𝚪E(S) of S is the undirected graph whose vertices are the equivalence classes induced by ~ on S other than [0]S and [1]S, in which two distinct vertices [a]S and [b]S are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials R0[x] and the near-ring of the power series R0[[x]] over a commutative ring R. Also, we give a complete characterization of the diameter of these two graphs. It is natural to try to find the relationship between diam(𝚪E(R0[x])) and diam(𝚪E(R0[[x]])). As a corollary, it is shown that for a reduced ring R, diam(𝚪E(R)) ≤ diam(𝚪E(R0[x])) ≤ diam(𝚪E(R0[[x]])).

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

Weakly np-Injective Rings and Weakly C2 Rings

  • Wei, Junchao;Che, Jianhua
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.93-108
    • /
    • 2011
  • A ring R is called left weakly np- injective if for each non-nilpotent element a of R, there exists a positive integer n such that any left R- homomorphism from $Ra^n$ to R is right multiplication by an element of R. In this paper various properties of these rings are first developed, many extending known results such as every left or right module over a left weakly np- injective ring is divisible; R is left seft-injective if and only if R is left weakly np-injective and $_RR$ is weakly injective; R is strongly regular if and only if R is abelian left pp and left weakly np- injective. We next introduce the concepts of left weakly pp rings and left weakly C2 rings. In terms of these rings, we give some characterizations of (von Neumann) regular rings such as R is regular if and only if R is n- regular, left weakly pp and left weakly C2. Finally, the relations among left C2 rings, left weakly C2 rings and left GC2 rings are given.

SOME ARITHMETIC PROPERTIES ON NONSTANDARD NUMBER FIELDS

  • Lee, Junguk
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1345-1356
    • /
    • 2017
  • For a given number field K, we show that the ranks of elliptic curves over K are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of K. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group as $^*{\mathbb{Z}}$-module, where $^*{\mathbb{Z}}$ is an ultrapower of ${\mathbb{Z}}$, and we show that the nonstandard weak Mordell-Weil property is equivalent to the weak Mordell-Weil property in $^*K$. In a saturated nonstandard number field, there is a nonstandard ring of integers $^*{\mathbb{Z}}$, which is definable. We can consider definable abelian groups as $^*{\mathbb{Z}}$-modules so that the nonstandard weak Mordell-Weil property is well-defined, and we conclude that the nonstandard weak Mordell-Weil property and the weak Mordell-Weil property are equivalent. We have valuations induced from prime numbers in nonstandard rational number fields, and using these valuations, we identify two nonstandard rational numbers.

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.571-594
    • /
    • 2022
  • Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).