Browse > Article
http://dx.doi.org/10.4134/JKMS.j210419

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS  

Chang, Gyu Whan (Department of Mathematics Education Incheon National University)
Publication Information
Journal of the Korean Mathematical Society / v.59, no.3, 2022 , pp. 571-594 More about this Journal
Abstract
Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).
Keywords
(almost) Dedekind domain; ideal class group; DVR; polynomial overring of ${\mathbb{Z}}$; Int(${\mathbb{Z}}$);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Estes and J. Ohm, Stable range in commutative rings, J. Algebra 7 (1967), 343-362. https://doi.org/10.1016/0021-8693(67)90075-0   DOI
2 M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), no. 3, 803-835. https://doi.org/10.1006/jabr.1996.0147   DOI
3 R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
4 N. Bourbaki, Commutative Algebra. Chapters 1-7, translated from the French, reprint of the 1972 edition, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989.
5 M. Zafrullah, Putting t-invertibility to use, in Non-Noetherian commutative ring theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
6 B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2   DOI
7 P. Samuel, Lectures on Unique Factorization Domains, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30, Tata Institute of Fundamental Research, Bombay, 1964.
8 K. A. Loper and F. Tartarone, A classification of the integrally closed rings of polynomials containing ℤ[X], J. Commut. Algebra 1 (2009), no. 1, 91-157. https://doi.org/10.1216/JCA-2009-1-1-91   DOI
9 K. A. Loper and N. J. Werner, Generalized rings of integer-valued polynomials, J. Number Theory 132 (2012), no. 11, 2481-2490. https://doi.org/10.1016/j.jnt.2012.05.009   DOI
10 M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
11 P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301. https://doi.org/10.1016/0021-8693(71)90110-4   DOI
12 W. Heinzer, On Krull overrings of a Noetherian domain, Proc. Amer. Math. Soc. 22 (1969), 217-222. https://doi.org/10.2307/2036956   DOI
13 S. Gabelli and F. Tartarone, On the class group of integer-valued polynomial rings over Krull domains, J. Pure Appl. Algebra 149 (2000), no. 1, 47-67. https://doi.org/10.1016/S0022-4049(98)00159-5   DOI
14 R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583-587. https://doi.org/10.1017/s0305004100076568   DOI
15 R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
16 R. Gilmer, W. Heinzer, D. Lantz, and W. Smith, The ring of integer-valued polynomials of a Dedekind domain, Proc. Amer. Math. Soc. 108 (1990), no. 3, 673-681. https://doi.org/10.2307/2047787   DOI
17 M. Griffin, Some results on v-multiplication rings, Canadian J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8   DOI
18 S. Kabbaj and A. Mimouni, t-class semigroups of integral domains, J. Reine Angew. Math. 612 (2007), 213-229. https://doi.org/10.1515/CRELLE.2007.088   DOI
19 B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv, J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9   DOI
20 C. R. Leedham-Green, The class group of Dedekind domains, Trans. Amer. Math. Soc. 163 (1972), 493-500. https://doi.org/10.2307/1995734   DOI
21 K. A. Loper and T. G. Lucas, Factoring ideals in almost Dedekind domains, J. Reine Angew. Math. 565 (2003), 61-78. https://doi.org/10.1515/crll.2003.105   DOI
22 J.-L. Chabert and G. Peruginelli, Polynomial overrings of Int(ℤ), J. Commut. Algebra 8 (2016), no. 1, 1-28. https://doi.org/10.1216/JCA-2016-8-1-1   DOI
23 P. Eakin and W. Heinzer, More noneuclidian PID's and Dedekind domains with prescribed class group, Proc. Amer. Math. Soc. 40 (1973), 66-68. https://doi.org/10.2307/2038634   DOI
24 D. F. Anderson, The class group and local class group of an integral domain, in Non-Noetherian commutative ring theory, 33-55, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
25 D. F. Anderson and G. W. Chang, The class group of integral domains, J. Algebra 264 (2003), no. 2, 535-552. https://doi.org/10.1016/S0021-8693(03)00139-X   DOI
26 A. Bouvier, Le groupe des classes d'un anneau integre, 107 eme Congres des Societes Savantes, Brest fasc. IV (1982), 85-92.
27 P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, 48, American Mathematical Society, Providence, RI, 1997. https://doi.org/10.1090/surv/048   DOI
28 G. W. Chang, Every abelian group is the class group of a ring of Krull type, J. Korean Math. Soc. 58 (2021), no. 1, 149-171. https://doi.org/10.4134/JKMS.j200010   DOI
29 L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222. http://projecteuclid.org/euclid.pjm/1102994263   DOI
30 S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), no. 2-3, 171-184.   DOI