• Title/Summary/Keyword: Abalone (Haliotis discus)

Search Result 224, Processing Time 0.029 seconds

Molecular Characterization and Expression Analysis of a Glutathione S-Transferase cDNA from Abalone (Haliotis discus hannai) (북방전복 (Haliotis discus hannai)에서 분리한 Glutathione S-transferase 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Dong-Gyun;Kim, Young-Ok;Kim, Woo-Jin;An, Cheul Min;Nam, Bo-Hye
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • Glutathione S-transferases (GSTs) are a superfamily of detoxification enzymes that primarily catalyze the nucleophilic addition of reduced glutathione to both endogenous and exogenous electrophiles. In this study, we isolated and characterized a full-length of alpha class GST cDNA from the abalone (Haliotis discus hannai). The abalone GST cDNA encodes a 223-amino acid polypeptide with a calculated molecular mass of 25.8 kDa and isoelectric point of 5.69. Multiple alignments and phylogenetic analysis with the deduced abalone GST protein revealed that it belongs to the alpha class GSTs and showed strong homology with disk abalone (Haliotis discus discus) putative alpha class GST. Abalone GST mRNA was ubiquitously detected in all tested tissues. GST mRNA expression was comparatively high in the mantle, gill, liver, and digestive duct, however, lowest in the hemocytes. Expression level of abalone GST mRNA in the mantle, gill, liver, and digestive duct was 182.7-fold, 114.8-fold, 4675.8-fold, 406.1-fold higher than in the hemocytes, respectively. Expression level of abalone GST mRNA in the liver was peaked at 6 h post-infection with Vibrio parahemolyticus and decreased at 12 h post-infection. While the expression level of abalone GST mRNA in the hemocytes was drastically increased at 3 h post-infection with Vibrio parahemolyticus. These results suggest that abalone GST is conserved through evolution and may play roles similar to its mammalian counterparts.

Effects of Zinc Toxicity on Larval Development and Seed Collection of Abalone, haliotis discus hannai (참전복, Haliotis discus hannai 유생발생 및 채묘에 미치는 아연독성)

  • 서대철;최상덕;라성주;양한춘;서해립
    • Journal of Aquaculture
    • /
    • v.12 no.3
    • /
    • pp.229-236
    • /
    • 1999
  • in the present study, the zinc toxicity to larval development and seed attachment of the abalone, Haliotis discus hannai was obtained under continuous flow through system. The zinc concentration melted from zinc coating pipe for 7 months ranged from $89.00\pm2.55 \mu\textrm{g}/\ell to 15.23\pm2.58\mu\textrm{g}/\ell(Y=0.85M^2-19.71+109.96)$. Treatments were carried out with zinc concentration $0~160 \mu\textrm{g}/\ell$. The maximum and minimum of fertilization rate were $87.7\pm5.3%$ in control, $83.7\pm7.6%$ in zinc concentration $160\mu\textrm{g}/\ell$, respectively. The maximum and minimum of hatching rate were $87.5\pm4.5%$ in zinc concentration $10\mu\textrm{g}/\ell$, $79.3\pm5.6%$ in zinc concentration $160\mu\textrm{g}/\ell$, respectively. Both of the results were not significantly different (P>0.05). But the normality rate, setting rate and survival rate of abalone larvae at over zinc concentration TEX>$20\mu\textrm{g}/\ell$ decreased rapidly and showed significantly different from those of the other group(P<0.05).

  • PDF

A flowcytometric determination of DNA content in Pacific abalone, Haliotis discus hannai cell (유동세포분석에 의한 참전복(Haliotis discus hannai) 세포내 DNA 함량 분석 최적화)

  • Park, In-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.248-253
    • /
    • 2020
  • The level at which analyses of DNA content might contribute more significantly to the genetic mechanisms of evolution lies in the events of speciation. The object of this study was to investigate the DNA content of abalone (Haliotis discus hannai) and determine the optimal tissue samples for measuring the DNA content of abalone by flowcytometry without fixation. The DNA content (pg/nucleus) of gill tissue (2.5±0.08), which was contaminated with protozoa, was significantly lower than that of muscle tissue (3.2±0.02), mantle tissue (3.2±0.02) (p<0.05), and a standard reference standard, while the DNA contents of muscle tissue and mantle tissue were higher than that of the standard reference. Considering the results of this study, DNA content analysis with flowcytometry is an acute and rapid method by which muscle tissue and mantle tissue are the most appropriate sample for measuring the DNA content of abalone without fixation.

Molecular Characterization and Expression Analysis of Peroxiredoxin 2 cDNA from Abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1291-1300
    • /
    • 2014
  • Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that participate in a variety of biological processes, including $H_2O_2$-mediated signal transduction, molecular chaperoning, and mitochondrial function. In this study, we isolated and characterized a Prx 2 cDNA from abalone (Haliotis discus hannai). The abalone Prx 2 cDNA encoded a 199-amino acid polypeptide that belongs to a class of typical 2-Cys Prxs that contain peroxidatic and resolving cysteines. The deduced abalone Prx 2 protein showed strong homology (64-99%) with Prx 2 proteins from other species, including mollusk, fish, amphibians, and mammals, and it was most closely related to disk abalone (H. discus discus) Prx 2. Abalone Prx 2 mRNA was ubiquitously detected in tested tissues, and its expression was comparatively high in the mantle, gills, liver, foot, and digestive duct. The expression level of abalone Prx 2 mRNA was 106.7-fold, 51.9-fold, and 437.8-fold higher, respectively, in the gills, digestive duct, and liver than in the muscles. The expression level of abalone Prx 2 mRNA in the liver peaked at 6 hr postinfection with Vibrio parahemolyticus and decreased at 12 hr postinfection. The expression level of abalone Prx 2 mRNA in hemocytes was drastically increased at 1 hr postinfection with V. parahemolyticus. These results suggest that abalone Prx 2 is conserved through evolution and that it may play a role similar to that of its mammalian counterpart.

Molecular Characterization and Expression Analysis of a Toll-like receptor 2/6 gene from Abalone (Haliotis discus hannai) (북방전복 (Haliotis discus hannai) 에서 분리한 Toll-like receptor 2/6 유전자의 분자생물학적 특성 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • The Korean Journal of Malacology
    • /
    • v.31 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • Toll-like receptors (TLRs) are a major pattern recognition receptor that recognize the structure of invading pathogen and play key roles by triggering immune response. In this study, we identified a sequence of TLR homolog and characterized at molecular level from the abalone (Haliotis discus hannai). Multiple alignments and phylogenetic analysis of abalone TLR protein belongs to the TLR 2/6. Expression level of abalone TLR 2/6 in the tissue was comparatively high in the mantle, gill, digestive duct, and hemocytes, but lowest in the muscle. Expression level of abalone TLR 2/6 mRNA in the mantle, gill, digestive duct, and hemocytes was 20-fold, 60-fold, 115-fold, 112-fold higher than in the muscle, respectively. Expression level of abalone TLR 2/6 mRNA in the mantle was steadily increased until 12 h and decreased post-infection with Vibrio parahemolyticus. While the expression level of abalone TLR 2/6 mRNA in the gill and hemocytes was drastically increased at 6 and 9 h post-infection with Vibrio parahemolyticus, respectively. These results suggest that abalone TLR 2/6 is conserved through evolution and may play roles similar to its mammalian counterparts.

The Effects of Substituting Squid Meal and Macroalgae with Soybean Meal in a Commercial Diet on Growth and Body Composition of Juvenile Abalone Haliotis discus hannai (전복(Haliotis discus hannai) 용 배합사료내 오징어분 및 해조류 대체원으로서 대두박이 전복 치패의 성장과 체조성에 미치는 영향)

  • Kim, Byeng-Hak;Kim, Hee Sung;Cho, Sung Hwoan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.329-336
    • /
    • 2015
  • We examined the effect of substituting squid meal and macroalgae with soybean meal in a commercial diet on the growth and body composition of juvenile abalone Haliotis discus hannai. We randomly distributed 2310 juvenile abalone into 33 rectangular plastic containers and fed them five experimental diets in triplicate as follows. The control diet (Con) consisted of 12% squid meal, 8% corn gluten and 20% soybean meal as protein source, wherein 10% ${\alpha}$-starch, 20% wheat flour, and 5% dextrin were carbohydrate source. The experimental diets, 50% squid meal (SM50), 50% squid meal and 50% macroalgae (SM50+MA50), and 100% squid meal and 50% macroalgae (SM100+MA50) were substituted with the same respective amounts of soybean meal. The fifth experimental diet consisted of the control diet plus 1% diatom powder (DP). We prepared two domestic (Domestic A and B) and two imported (China and Japan) abalone feeds. Finally, we prepared Undaria and sea tangle. We found that the weight gain of abalone fed the Con, DP, and China and Japan diets was significantly greater than that of abalone fed Undaria and sea tangle. We conclude that the substituting squid meal and macroalgae with soybean meal in abalone feed has limited benefits, but supplementing diets with 1% diatom powder is effective in improving weight gain.

Protective Effects of In Vitro Gastrointestinal Digests of Abalone (Haliotis discus hannai) Intestines against Oxidative Stress in RAW264.7 Macrophage Cells

  • Nguyen, Phuong-Hong;Kim, Sun-Ae;Choi, Il-Whan;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.216-223
    • /
    • 2010
  • Abalone (Haliotis discus hannai), mostly distributed and maricultured in southwestern coastal areas of South Korea, is recognized as an economically important species in the fishery industry. Abalone intestines are one of the by-products of abalone processing. To investigate abalone intestines as bioactive substances, abalone intestine gastrointestinal digests (AIGIDs) of various molecular weights (MWs) were prepared using in vitro gastrointestinal digestion and an ultrafiltration system, and tested for inhibitory effects against reactive oxygen species (ROS) and oxidative stress in macrophage cells treated with hydrogen peroxide ($H_2O_2$). In our results, among AIGIDs, AIGID-III (MW=5-10 kDa) showed potent inhibitory activities for lipid peroxidation and free radicals. Additionally, the results clearly indicated that AIGID-III treatment could prevent cytotoxic damage of macrophages by $H_2O_2$-induced oxidative stress due to its potent scavenging ability against cellular ROS. These results suggest that AIGIDs may have protective and therapeutic potential for oxidative stress syndromes and immune diseases through ROS inhibition in macrophage cells.

Influences of Dietary Inclusion of Genetically Modified Soybean or Corn on the Growth Performance and Body Composition of Juvenile Abalone Haliotis discus hannai (유전자 변이 대두와 옥수수 함유 사료가 참전복(Haliotis discus hannai) 치패의 성장과 체조성에 미치는 영향)

  • Lee, Sang-Min;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.560-564
    • /
    • 2011
  • Two feeding experiments were conducted to investigate the effects of dietary inclusion of genetically modified (GM) soybean and corn on the growth performance, feed utilization and body composition of juvenile abalone Haliotis discus hannai. Four isonitrogenous (31% crude protein) and isolipidic (6% crude lipid) diets (designated as nGM-soya, GM-soya, nGM-corn and GM-corn) were formulated to contain 20% non-GM (nGM) and GM soya and corn. Fifty juvenile abalone (initial body weight, 2.0 g) were distributed in each 50 L tank in a flow-through system. Each experimental diet was fed to duplicate groups of abalone to satiation once a day for 10 weeks. No effects of GM feedstuffs on survival were observed. Dietary inclusion of GM feedstuffs did not affect either growth performance or feed utilization of abalone. Body composition was not altered by the inclusion of GM feedstuffs. These results indicate that dietary inclusion of GM soybean and corn could have no effect on the growth performance and body composition of juvenile abalone. Further studies to investigate the effects of GM feedstuffs on transgenic fragment residues in ambient environments and in animals are necessary for the safe use of such ingredients in aquaculture.

The Effects of Suspended Solids on the Mortality and the Glycogen Content of Abalone, Haliotis discus hannai (참전복, Haliotis discus hannai의 폐사 및 글리코겐 함량에 미치는 부유토사의 영향)

  • Lee, Kyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Elevated concentrations of suspended solids in the marine enrironment caused by coastal developments have threatened to the marine ecosystem. Effects of suspended solids on the mortality and the modifications of glycogen levels of abalone, Haliotis discus hannai were studied. Abalone were exposed to suspended solids with concentrations of 0 (control), 1,000, 1,500 and 2,000 mg/ L for 96h. These suspended solids had no effect on the mortality of abalone. Significant decreases in the glycogen content of soft tissues were observed over 1,500 mg/ L concentration of suspended solids. These results suggested that abalone could tolerate a high level of suspended solids. However, it is necessary to observe further the long term effects of suspended solids on the physiological responses of abalone.

  • PDF