• Title/Summary/Keyword: ATP binding protein

Search Result 159, Processing Time 0.03 seconds

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.

Effect of Elevated Ultraviolet-B Radiation on Yield and Differential Expression of Proteome in Perilla (perilla frutescens L.) (잎들깨 수량과 단백질체 발현에 미치는 UV-B의 영향)

  • Hong, Seung-Chang;Hwang, Seon-Woong;Chang, An-Cheol;Shin, Pyung-Gyun;Jang, Byoung-Choon;Lee, Chul-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Plastichouse cultivation for crops and vegetables in the winter has been widely popularized in Korea. In the vinylhouse Ultraviolet B penetration is lower than in the field, and so some problems, as plant overgrowth and outbreak of disease, occurred frequently. The effect of artificial supplement ultraviolet B $(UV-B:280{\sim}320nm)$ radiation on the physiological responses and yield of perilla (perilla frutescens) was investigated UV-B ray was radiated on perilla with the 10th leaf stage at the distance of 90, 120 and 150 cm from the plant canopy for 30 days after planting in the vinylhouse. The production of fresh perilla leaves was high in the order of plastic house, ambient+50% of supplemental UV-B, ambient ambient+100% of supplemental UV-B. Enhanced UV-B radiation affected the intensity of thirty-three proteins in 2-dimensional electrophoretic analysis of proteins and ten proteins out of them seemed to be responsive to UV-B : a protein was, ATP synthase CF1 alpha chain, down regulated and nine proteins (Chlorophyll a/b bindng protein type I, Chlorophyll a/b binding protein type II precursor, Photosystem I P700 chlorophyll a apoprotein A2, DNA recombination and repair protein recF, Galactinol synthase, S-adenosyl-L-methionine, Heat shock protein 21, Calcium-dependent protein kinase(CDPK)-like, Catalase) were up-regulated.

Sequencing analysis of the OFC1 gene on the nonsyndromic cleft lip and palate patient in Korean (한국인 비증후군성 구순구개열 환자의 OFC1 유전자의 서열 분석)

  • Kim, Sung-Sik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.185-197
    • /
    • 2003
  • This study was performed to identify the characteristics of the OFC1 gene (locus: chromosome 6p24.3) in Korean patients, which is assumed to be the major gene behind the nonsyndromic cleft lip and palate. The sample consisted of 80 subjects: 40 nonsyndromic cleft lip and palate patients (proband, 20 males and females, mean age 14.2 years); and 40 normal adults (20 males and 20 females, mean age 25.6 years). Using PCR-based assay, the OFC1 gene was amplified, sequenced, and then searched for similar protein structures. Results were as follows: 1. The OFC1 gene contains the microsatellite marker 'CA' repeats. The number of the reference 'CA' repeats was 21 times, and formed as TA(CA)11TA(CA)10. But, in Koreans, the number of tandem 'CA' repeats was varied from 17 to 26 except 18, and 'CA' repeats consisted of TA(CA)n. 2. Nine allelic variants were found. Distribution of the OFC1 allele was similar between the patients and control group. 3. There was a replacement of the base 'T' to 'C' after 11 tandem 'CA' repeats in Koreans compared with Weissenbach's report. However, the difference did not seem to be the ORF prediction results between Koreans and Weissenbach's report. 4. The BLAST search results showed the Telomerase reverse transcriptase (TERT) and the Nucleotide binding protein 2 (NBP2) as similar proteins. The TERT was a protein product by the hTERT gene in the locus 5p15.33 (NCBI Genome Annotation; NT023089) The NBP2 was a protein product by the ABCC3 (ATP-binding cassette, sub-family C) gene in the locus 17q22 (NCBI Genome Annotation; NT010783). 5. In the Pedant-Pro database analysis, the predictable protein structure of the OFC1 gene had at least one transmembrane region and one non-globular region.

Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene (Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성)

  • Ahn Sun Hee;Lee Eun Mi;Kim Dong Gyun;Hong Gyoung Eun;Park Eun Mi;Kong In Soo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.131-135
    • /
    • 2006
  • Oligopeptide is known to be an essential nitrogen nutrient for bacterial growth. Oligopeptide can be transported into cytoplasm by a specific transport system, Opp system. Opp system is composed of five proteins, which are transcribed by an operon. These are responsible for oligopeptide binding protein (OppA), permease (OppB and OppC) and energy generation system (OppD and OppF), respectively. Previously, we isolated the opp operon from Vibrio fluvialis and constructed the oppA mutant by allelic exchange method. In this study, we investigated the growth pattern and biofilm production under the different growth condition. When the cells were cultivated using brain heart infusion(BHI) medium, the wild type was faster than the mutant in growth during the exponential phase. However, it showed that the growth pattern of two strains in M9 medium is very similar. The growth of wild type showed better than that of the mutant grown at pH 8. At pH 7, there was no an obvious difference in growth. After 5 mM $H_2O_2$ was treated to the cells $(OD_{600}=1.2)$, the cell survival was examined. The oppA mutation did not affect in survivability. In the presence of $10{\mu}g/ml$ polymyxin B, the biofilm production of the oppA mutant was higher than that of the wild type.

Characterization and Resistance Mechanisms of A 5-fluorouracil-resistant Hepatocellular Carcinoma Cell Line

  • Gu, Wei;Fang, Fan-Fu;Li, Bai;Cheng, Bin-Bin;Ling, Chang-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4807-4814
    • /
    • 2012
  • Purpose: The chemoresistance of human hepatocellular carcinoma (HCC) to cytotoxic drugs, especially intrinsic or acquired multidrug resistance (MDR), still remains a major challenge in the management of HCC. In the present study, possible mechanisms involved in MDR of HCC were identified using a 5-fluorouracil (5-FU)-resistant human HCC cell line. Methods: BEL-7402/5-FU cells were established through continuous culturing parental BEL-7402 cells, imitating the pattern of chemotherapy clinically. Growth curves and chemosensitivity to cytotoxic drugs were determined by MTT assay. Doubling times, colony formation and adherence rates were calculated after cell counting. Morphological alteration, karyotype morphology, and untrastructure were assessed under optical and electron microscopes. The distribution in the cell cycle and drug efflux pump activity were measured by flow cytometry. Furthermore, expression of potential genes involved in MDR of BEL-7402/5-FU cells were detected by immunocytochemistry. Results: Compared to its parental cells, BEL-7402/5-FU cells had a prolonged doubling time, a lower mitotic index, colony efficiency and adhesive ability, and a decreased drug efflux pump activity. The resistant cells tended to grow in clusters and apparent changes of ultrastructures occurred. BEL-7402/5-FU cells presented with an increased proportion in S and G2/M phases with a concomitant decrease in G0/G1 phase. The MDR phenotype of BEL-7402/5-FU might be partly attributed to increased drug efflux pump activity via multidrug resistance protein 1 (MRP1), overexpression of thymidylate synthase (TS), resistance to apoptosis by augmentation of the Bcl-xl/Bax ratio, and intracellular adhesion medicated by E-cadherin (E-cad). P-glycoprotein (P-gp) might play a limited role in the MDR of BEL-7402/5-FU. Conclusion: Increased activity or expression of MRP1, Bcl-xl, TS, and E-cad appear to be involved in the MDR mechanism of BEL-7402/5-FU.

Functional Implications of Transporters Under Nitrosative Stress Conditions

  • Yu, Kyung-Ha;Maeng, Han-Joo;Chung, Suk-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.139-153
    • /
    • 2010
  • Nitrosative stress is defined as pathophysiological conditions that are related to covalent modifications of proteins by nitration/nitrosylation by forms of nitrogen oxide ($NO_x$), leading to DNA damage, ultimately, cell death. This type of stress condition appears to be associated with a number of disease states, including diabetes, inflammation and neurodegenerative diseases. Since these pathological conditions are frequently chronic in nature and, thus, require long-term treatment, changes in pharmacokinetics are likely to affect the therapy. Transporters are membrane proteins that facilitate the movement of substrates, including drugs, across plasma membranes of epithelial / endothelial cells. Since it is now increasingly evident that transporters are pharmacokinetically significant, functional alteration of transporters by this stress condition may have therapeutic relevance. In this review, experimental techniques that are used to study both in vivo and in vitro nitrosative stress are summarized and discussed, along with available literature information on the functional implication of transporters under conditions of nitrosative stress conditions. In the literature, both functional induction and impa irment were apparently present for both drug transporter families [i.e., ATP-binding cassette (ABC) and solute carrier families (SLC)]. Furthermore, a change in the function of a certain transporter appears to have temporal dependency by impairment in the early phase of nitrosative stress and induction thereafter, suggesting that the role of nitrosative stress is complex in terms of functional implications of the transporters. Although the underlying mechanisms for these alterations are not fully understood, protein nitration/nitrosylation appears to be involved in the functional impairment whereas transcript factor(s) activated by nitrosative stress may play a role, at least in part, in functional induction. Interestingly, functional induction under conditions of nitrosative stress has not been observed for SLC transporters while such impairment has been documented for both ABC and SLC transporters. Further investigations appear to be necessary to fully delineate the underlying reasons for these differences on the impact and importance of nitrosative stress conditions.

The mitochondrial proteome analysis in wheat roots

  • Kim, Da-Eun;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Kwon, Soo Jeong;Cho, Kun;Cho, Seong-Woo;Park, Chul-Soo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.126-126
    • /
    • 2017
  • Mitochondria are important in wheat, as in all crops, as the main source of ATP for cell maintenance and growth including vitamin synthesis, amino acid metabolism and photorespiration. To investigate the mitochondrial proteome of the roots of wheat seedlings, a systematic and targeted analysis were carried out on the mitochondrial proteome from 15 day-old wheat seedling root material. Mitochondria were isolated by Percoll gradient centrifugation; and extracted proteins were separated and analyzed by Tricine SDS-PAGE along with LTQ-FTICR mass spectrometry. From the isolated the sample, 184 proteins were identified which is composed of 140 proteins as mitochondria and 44 proteins as other subcellular proteins that are predicted by the freeware subcellular predictor. The identified proteins in mitochondria were functionally classified into 12 classes using the ProtFun 2.2 server based on biological processes. Proteins were shown to be involved in amino acid biosynthesis (17.1%), biosynthesis of cofactors (6.4%), cell envelope (11.4%), central intermediary metabolism (10%), energy metabolism (20%), fatty acid metabolism (0.7%), purines and pyrimidines (5.7%), regulatory functions (0.7%), replication and transcription (1.4%), translation (22.1%), transport and binding (1.4%), and unknown (2.8%). These results indicate that many of the protein components present and functions of identifying proteins are common to other profiles of mitochondrial proteins performed to date. This dataset provides the first extensive picture, to our knowledge, of mitochondrial proteins from wheat roots. Future research is required on quantitative analysis of the wheat mitochondrial proteomes at the spatial and developmental level.

  • PDF

CrABCA2 Facilitates Triacylglycerol Accumulation in Chlamydomonas reinhardtii under Nitrogen Starvation

  • Jang, Sunghoon;Kong, Fantao;Lee, Jihyeon;Choi, Bae Young;Wang, Pengfei;Gao, Peng;Yamano, Takashi;Fukuzawa, Hideya;Kang, Byung-Ho;Lee, Youngsook
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • The microalga Chlamydomonas reinhardtii accumulates triacylglycerols (TAGs) in lipid droplets under stress conditions, such as nitrogen starvation. TAG biosynthesis occurs mainly at the endoplasmic reticulum (ER) and requires fatty acid (FA) substrates supplied from chloroplasts. How FAs are transferred from chloroplast to ER in microalgae was unknown. We previously reported that an Arabidopsis thaliana ATP-binding cassette (ABC) transporter, AtABCA9, facilitates FA transport at the ER during seed development. Here we identified a gene homologous to AtABCA9 in the C. reinhardtii genome, which we named CrABCA2. Under nitrogen deprivation conditions, CrABCA2 expression was upregulated, and the CrABCA2 protein level also increased. CrABCA2 knockdown lines accumulated less TAGs and CrABCA2 overexpression lines accumulated more TAGs than their untransformed parental lines. Transmission electron microscopy showed that CrABCA2 was localized in swollen ER. These results suggest that CrABCA2 transports substrates for TAG biosynthesis to the ER during nitrogen starvation. Our study provides a potential tool for increasing lipid production in microalgae.

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF

Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans

  • Alfhili, Mohammad A.;Yoon, Dong Suk;Faten, Taki A.;Francis, Jocelyn A.;Cha, Dong Seok;Zhang, Baohong;Pan, Xiaoping;Lee, Myon-Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1052-1060
    • /
    • 2018
  • Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment ($LC_{50}$: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.