Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0262

CrABCA2 Facilitates Triacylglycerol Accumulation in Chlamydomonas reinhardtii under Nitrogen Starvation  

Jang, Sunghoon (Department of Life Sciences, Pohang University of Science and Technology)
Kong, Fantao (School of Bioengineering, Dalian University of Technology)
Lee, Jihyeon (Integrative Biosciences and Biotechnology, Pohang University of Science and Technology)
Choi, Bae Young (Integrative Biosciences and Biotechnology, Pohang University of Science and Technology)
Wang, Pengfei (Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong)
Gao, Peng (Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong)
Yamano, Takashi (Graduate School of Biostudies, Kyoto University)
Fukuzawa, Hideya (Graduate School of Biostudies, Kyoto University)
Kang, Byung-Ho (Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong)
Lee, Youngsook (Integrative Biosciences and Biotechnology, Pohang University of Science and Technology)
Abstract
The microalga Chlamydomonas reinhardtii accumulates triacylglycerols (TAGs) in lipid droplets under stress conditions, such as nitrogen starvation. TAG biosynthesis occurs mainly at the endoplasmic reticulum (ER) and requires fatty acid (FA) substrates supplied from chloroplasts. How FAs are transferred from chloroplast to ER in microalgae was unknown. We previously reported that an Arabidopsis thaliana ATP-binding cassette (ABC) transporter, AtABCA9, facilitates FA transport at the ER during seed development. Here we identified a gene homologous to AtABCA9 in the C. reinhardtii genome, which we named CrABCA2. Under nitrogen deprivation conditions, CrABCA2 expression was upregulated, and the CrABCA2 protein level also increased. CrABCA2 knockdown lines accumulated less TAGs and CrABCA2 overexpression lines accumulated more TAGs than their untransformed parental lines. Transmission electron microscopy showed that CrABCA2 was localized in swollen ER. These results suggest that CrABCA2 transports substrates for TAG biosynthesis to the ER during nitrogen starvation. Our study provides a potential tool for increasing lipid production in microalgae.
Keywords
ABC transporter; Chlamydomonas reinhardtii; endoplasmic reticulum; triacylglycerol accumulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gonzalez-Ballester, D., Pootakham, W., Mus, F., Yang, W., Catalanotti, C., Magneschi, L., de Montaigu, A., Higuera, J.J., Prior, M., Galvan, A., et al. (2011). Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7, 24.   DOI
2 Goodson, C., Roth, R., Wang, Z.T., and Goodenough, U. (2011). Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot. Cell 10, 1592-1606.   DOI
3 Harris, E.H. (1989). The Chlamydomonas Sourcebook (California: Academic Press).
4 Harris, E.H. (2001). Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363-406.   DOI
5 Higgins, B.T. and VanderGheynst, J.S. (2014). Effects of escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors. PLoS One 9, e96807.   DOI
6 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639.   DOI
7 Hwang, J.-U., Song, W.-Y., Hong, D., Ko, D., Yamaoka, Y., Jang, S., Yim, S., Lee, E., Khare, D., and Kim, K. (2016). Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Mol. Plant 9, 338-355.   DOI
8 Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275-282.   DOI
9 Ibanez-Salazar, A., Rosales-Mendoza, S., Rocha-Uribe, A., Ramirez-Alonso, J.I., Lara-Hernandez, I., Hernandez-Torres, A., Paz-Maldonado, L.M.T., Silva-Ramirez, A.S., Banuelos-Hernandez, B., and Martinez-Salgado, J.L. (2014). Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J. Biotechnol. 184, 27-38.   DOI
10 Jang, S., Yamaoka, Y., Ko, D.h., Kurita, T., Kim, K., Song, W.Y., Hwang, J.U., Kang, B.H., Nishida, I., and Lee, Y. (2015). Characterization of a Chlamydomonas reinhardtii mutant defective in a maltose transporter. J. Plant Biol. 58, 344-351.   DOI
11 Kang, B.H. (2010). Electron microscopy and high-pressure freezing of Arabidopsis. In Methods in Cell Biology, J. Spence, ed. (Amsterdam, The Netherlands: Elsevier), pp. 259-283.
12 Lee, J.H., Lin, H., Joo, S., and Goodenough, U. (2008). Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133, 829-840.   DOI
13 Kim, S., Yamaoka, Y., Ono, H., Kim, H., Shim, D., Maeshima, M., Martinoia, E., Cahoon, E.B., Nishida, I., and Lee, Y. (2013). AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 110, 773-778.   DOI
14 Kim, Y., Terng, E.L., Riekhof, W.R., Cahoon, E.B., and Cerutti, H. (2018). Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 115, 1652-1657.   DOI
15 Kong, F., Burlacot, A., Liang, Y., Legeret, B., Alseekh, S., Brotman, Y., Fernie, A.R., Krieger-Liszkay, A., Beisson, F., Peltier, G., et al. (2018). Interorganelle communication: peroxisomal malate Dehydrogenase2 connects lipid catabolism to photosynthesis through redox coupling in Chlamydomonas. Plant Cell 30, 1824-1847.   DOI
16 Kong, F., Liang, Y., Legeret, B., Beyly-Adriano, A., Blangy, S., Haslam, R.P., Napier, J.A., Beisson, F., Peltier, G., and Li-Beisson, Y. (2017). Chlamydomonas carries out fatty acid $\beta$-oxidation in ancestral peroxisomes using a bona fide acyl‐CoA oxidase. Plant J. 90, 358-371.   DOI
17 Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.   DOI
18 Li, N., Gugel, I.L., Giavalisco, P., Zeisler, V., Schreiber, L., Soll, J., and Philippar, K. (2015). FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol. 13, e1002053.   DOI
19 Katoh, K. and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.   DOI
20 Li, R., Yu, K., and Hildebrand, D.F. (2010). DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45, 145-157.   DOI
21 Neupert, J., Karcher, D., and Bock, R. (2009). Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 57, 1140-1150.   DOI
22 Li, X., Zhang, R., Patena, W., Gang, S.S., Blum, S.R., Ivanova, N., Yue, R., Robertson, J.M., Lefebvre, P.A., Fitz-Gibbon, S.T., et al. (2016). An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28, 367-387.   DOI
23 Liu, J., Lee, Y.Y., Mao, X., and Li, Y. (2017). A simple and reproducible non-radiolabeled in vitro assay for recombinant acyltransferases involved in triacylglycerol biosynthesis. J. Appl. Phycol. 29, 323-333.   DOI
24 Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Marechal-Drouard, L., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250.   DOI
25 Ngan, C.Y., Wong, C.H., Choi, C., Yoshinaga, Y., Louie, K., Jia, J., Chen, C., Bowen, B., Cheng, H., and Leonelli, L. (2015). Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat. Plants 1, 15107.   DOI
26 Li, N., Zhang, Y., Meng, H., Li, S., Wang, S., Xiao, Z., Chang, P., Zhang, X., Li, Q., Guo, L., et al. (2019). Characterization of fatty acid exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. Biotechnol. Biofuels 12, 14.   DOI
27 Pineau, L., Colas, J., Dupont, S., Beney, L., Fleurat-Lessard, P., Berjeaud, J.M., Berges, T., and Ferreira, T. (2009). Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 10, 673-690.   DOI
28 Nguyen, H.M., Baudet, M., Cuine, S., Adriano, J.M., Barthe, D., Billon, E., Bruley, C., Beisson, F., Peltier, G., Ferro, M., et al. (2011). Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11, 4266-4273.   DOI
29 Nguyen, H.M., Cuine, S., Beyly-Adriano, A., Legeret, B., Billon, E., Auroy, P., Beisson, F., Peltier, G., and Li-Beisson, Y. (2013). The green microalga Chlamydomonas reinhardtii has a single omega-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol. 163, 914-928.   DOI
30 Piehler, A., Kaminski, W.E., Wenzel, J.J., Langmann, T., and Schmitz, G. (2002). Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem. Biophys. Res. Commun. 295, 408-416.   DOI
31 Pohl, A., Devaux, P.F., and Herrmann, A. (2005). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim. Biophys. Acta 1733, 29-52.   DOI
32 Radakovits, R., Jinkerson, R.E., Darzins, A., and Posewitz, M.C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9, 486-501.   DOI
33 Roth, C.W., Holm, I., Graille, M., Dehoux, P., Rzhetsky, A., Wincker, P., Weissenbach, J., and Brey, P.T. (2003). Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Mol. Cells 15, 150-158.
34 Stevens, D.R., Purton, S., and Rochaix, J.D. (1996). The bacterial phleomycin resistance geneble as a dominant selectable marker in Chlamydomonas. Mol. Gen. Genet. 251, 23-30.
35 Salas-Montantes, C.J., Gonzalez-Ortega, O., Ochoa-Alfaro, A.E., Camarena-Rangel, R., Paz-Maldonado, L.M.T., Rosales-Mendoza, S., Rocha-Uribe, A., and Soria-Guerra, R.E. (2018). Lipid accumulation during nitrogen and sulfur starvation in Chlamydomonas reinhardtii overexpressing a transcription factor. J. Appl. Phycol. 1-13.
36 Schmollinger, S., Muhlhaus, T., Boyle, N.R., Blaby, I.K., Casero, D., Mettler, T., Moseley, J.L., Kropat, J., Sommer, F., Strenkert, D., et al. (2014). Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26, 1410-1435.   DOI
37 Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., and Smith, A.G. (2010). Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21, 277-286.   DOI
38 Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T., and Dyer, J.M. (2006). Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18, 2294-2313.   DOI
39 Stephens, E., Ross, I.L., King, Z., Mussgnug, J.H., Kruse, O., Posten, C., Borowitzka, M.A., and Hankamer, B. (2010). An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol. 28, 126-128.   DOI
40 Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
41 Tarling, E.J., de Aguiar Vallim, T.Q., and Edwards, P.A. (2013). Role of ABC transporters in lipid transport and human disease. Trends Endocrinol. Metab. 24, 342-350.   DOI
42 Wase, N., Tu, B., Black, P.N., and DiRusso, C.C. (2015). Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. Algal Res. 11, 74-84.   DOI
43 Torri, C., Samori, C., Adamiano, A., Fabbri, D., Faraloni, C., and Torzillo, G. (2011). Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production. Bioresour. Technol. 102, 8707-8713.   DOI
44 Tsai, C.H., Warakanont, J., Takeuchi, T., Sears, B.B., Moellering, E.R., and Benning, C. (2014). The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 111, 15833-15838.   DOI
45 Tsai, C.H., Zienkiewicz, K., Amstutz, C.L., Brink, B.G., Warakanont, J., Roston, R., and Benning, C. (2015). Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. Plant J. 83, 650-660.   DOI
46 Wang, P., Chen, X., Goldbeck, C., Chung, E., and Kang, B.H. (2017). A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J. 92, 596-610.   DOI
47 Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., and Goodenough, U. (2009). Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8, 1856-1868.   DOI
48 Wijffels, R.H. and Barbosa, M.J. (2010). An outlook on microalgal biofuels. Science 329, 796-799.   DOI
49 Yamano, T., Sato, E., Iguchi, H., Fukuda, Y., and Fukuzawa, H. (2015). Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 112, 7315-7320.   DOI
50 Aksoy, M., Pootakham, W., Pollock, S.V., Moseley, J.L., Gonzalez-Ballester, D., and Grossman, A.R. (2013). Tiered regulation of sulfur deprivation responses in Chlamydomonas reinhardtii and identification of an associated regulatory factor. Plant Physiol. 162, 195-211.   DOI
51 Beer, L.L., Boyd, E.S., Peters, J.W., and Posewitz, M.C. (2009). Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 20, 264-271.   DOI
52 Blaby, I.K., Glaesener, A.G., Mettler, T., Fitz-Gibbon, S.T., Gallaher, S.D., Liu, B., Boyle, N.R., Kropat, J., Stitt, M., Johnson, S., et al. (2013). Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25, 4305-4323.   DOI
53 Dean, M., Hamon, Y., and Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42, 1007-1017.   DOI
54 Boyle, N.R., Page, M.D., Liu, B., Blaby, I.K., Casero, D., Kropat, J., Cokus, S.J., Hong-Hermesdorf, A., Shaw, J., Karpowicz, S.J., et al. (2012). Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J. Biol. Chem. 287, 15811-15825.   DOI
55 Yamaoka, Y., Achard, D., Jang, S., Legeret, B., Kamisuki, S., Ko, D., Schulz-Raffelt, M., Kim, Y., Song, W.Y., and Nishida, I. (2016). Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol. J. 14, 2158-2167.   DOI
56 Yamaoka, Y., Shin, S., Choi, B.Y., Kim, H., Jang, S., Kajikawa, M., Yamano, T., Kong, F., Legeret, B., Fukuzawa, H., et al. (2019). The bZIP1 Transcription factor regulates lipid remodeling and contributes to ER stress management in Chlamydomonas reinhardtii. Plant Cell 31, 1127-1140.   DOI
57 Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
58 Brown, E.P., Normandin, E., Osei-Owusu, N.Y., Mahan, A.E., Chan, Y.N., Lai, J.I., Vaccari, M., Rao, M., Franchini, G., Alter, G., et al. (2015). Microscale purification of antigen-specific antibodies. J. Immunol. Methods 425, 27-36.   DOI
59 Chavez-Valdez, R., Flock, D.L., Martin, L.J., and Northington, F.J. (2016). Endoplasmic reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int. J. Dev. Neurosci. 48, 58-70.   DOI
60 Chen, J.E. and Smith, A.G. (2012). A look at diacylglycerol acyltransferases (DGATs) in algae. J. Biotechnol. 162, 28-39.   DOI
61 Gargouri, M., Park, J.J., Holguin, F.O., Kim, M.J., Wang, H., Deshpande, R.R., Shachar-Hill, Y., Hicks, L.M., and Gang, D.R. (2015). Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J. Exp. Bot. 66, 4551-4566.   DOI
62 Georgianna, D.R. and Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329-335.   DOI