DOI QR코드

DOI QR Code

Functional Implications of Transporters Under Nitrosative Stress Conditions

  • Received : 2010.05.16
  • Accepted : 2010.05.28
  • Published : 2010.06.20

Abstract

Nitrosative stress is defined as pathophysiological conditions that are related to covalent modifications of proteins by nitration/nitrosylation by forms of nitrogen oxide ($NO_x$), leading to DNA damage, ultimately, cell death. This type of stress condition appears to be associated with a number of disease states, including diabetes, inflammation and neurodegenerative diseases. Since these pathological conditions are frequently chronic in nature and, thus, require long-term treatment, changes in pharmacokinetics are likely to affect the therapy. Transporters are membrane proteins that facilitate the movement of substrates, including drugs, across plasma membranes of epithelial / endothelial cells. Since it is now increasingly evident that transporters are pharmacokinetically significant, functional alteration of transporters by this stress condition may have therapeutic relevance. In this review, experimental techniques that are used to study both in vivo and in vitro nitrosative stress are summarized and discussed, along with available literature information on the functional implication of transporters under conditions of nitrosative stress conditions. In the literature, both functional induction and impa irment were apparently present for both drug transporter families [i.e., ATP-binding cassette (ABC) and solute carrier families (SLC)]. Furthermore, a change in the function of a certain transporter appears to have temporal dependency by impairment in the early phase of nitrosative stress and induction thereafter, suggesting that the role of nitrosative stress is complex in terms of functional implications of the transporters. Although the underlying mechanisms for these alterations are not fully understood, protein nitration/nitrosylation appears to be involved in the functional impairment whereas transcript factor(s) activated by nitrosative stress may play a role, at least in part, in functional induction. Interestingly, functional induction under conditions of nitrosative stress has not been observed for SLC transporters while such impairment has been documented for both ABC and SLC transporters. Further investigations appear to be necessary to fully delineate the underlying reasons for these differences on the impact and importance of nitrosative stress conditions.

Keywords

References

  1. Bauer, B., Hartz, A.M., Miller, D.S., 2007. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol. Pharmacol. 71, 667-675. https://doi.org/10.1124/mol.106.029512
  2. Bernstein, H., Holubec, H., Bernstein, C., Ignatenko, N., Gerner, E., Dvorak, K., Besselsen, D., Ramsey, L., Dall'Agnol, M., Blohm-Mangone, K., Padilla-Torres, A.J., Cui, H., Garewal, H., Payne, C. M., 2006. Unique dietary-related mouse model of colitis. Inflamm. Bowel. Dis. 12, 278-293. https://doi.org/10.1097/01.MIB.0000209789.14114.63
  3. Bridges, C.C., Ola, M.S., Prasad, P.D., El-sherbeny, A., Ganapathy, V., Smith, S. B., 2001. Regulation of taurine transporter expression by NO in cultured human retinal pigment epithelial cells. Am. J. Physiol. Cell. Physiol. 281, C1825-C1836. https://doi.org/10.1152/ajpcell.2001.281.6.C1825
  4. Buffoli, B., Pechanova, O., Kojsova, S., Andriantsitohaina, R., Giugno, L., Bianchi, R., Rezzani, R., 2005. Provinol prevents CsA-induced nephrotoxicity by reducing reactive oxygen species, iNOS, and $NF-_{kappa}B$ expression. J. Histochem. Cytochem. 53, 1459-1468. https://doi.org/10.1369/jhc.5A6623.2005
  5. Cai, L., Wang, J., Li, Y., Sun, X., Wang, L., Zhou, Z., Kang, Y.J., 2005. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54, 1829-1837. https://doi.org/10.2337/diabetes.54.6.1829
  6. Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J.B., Pierce, W.M., Booze, R., Markesbery, W.R., Butterfield, D. A., 2002. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 33, 562-571. https://doi.org/10.1016/S0891-5849(02)00914-0
  7. Celedon, G., Gonzalez, G., Pino, J., Lissi, E.A., 2007. Peroxynitrite oxidizes erythrocyte membrane band 3 protein and diminishes its anion transport capacity. Free Radic. Res. 41, 316-323. https://doi.org/10.1080/10715760601090305
  8. Chen, C.F., Leu, F.J., Chen, H.I., Wang, D., Chou, S.J., 2006. Lack of a protective effect of insulin on three reperfusion-liver injury models in rats and mice. Transplant. Proc. 38, 2221-2225. https://doi.org/10.1016/j.transproceed.2006.07.016
  9. Cherrington, N.J., Slitt, A.L., Li, N., Klaassen, C.D., 2004. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispo. 30, 838-844.
  10. Chirino, Y.I., Hernandez-Pando, R., Pedraza-Chaverrí, J., 2004. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 30, 4-20.
  11. Chung, J.Y., Cho, J.Y., Yu, K.S., Kim, J.R., Oh, D.S., Jung, H.R., Lim, K.S., Moon, K.H., Shin S.G., Jang, I.J., 2005. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 78, 342-350. https://doi.org/10.1016/j.clpt.2005.07.003
  12. Chung, K.K., Dawson, T.M., Dawson, V.L., 2005. Nitric oxide, Snitrosylation and neurodegeneration. Cell. Mo.l Biol. 51, 247-254.
  13. Chung, S.J., Fung, H.L., 1990. Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary artery smooth muscle cells. J. Pharmacol. Exp. Ther. 253, 614-619.
  14. Chung, S.J., Chong, S., Seth, P., Jung, C.Y., Fung, H.L., 1992. Conversion of nitroglycerin to nitric oxide in microsomes of the bovine coronary artery smooth muscle is not primarily mediated by glutathione-S-transferases. J. Pharmacol. Exp. Ther. 260, 652-659.
  15. Dixit, S.G., Zingarelli, B., Buckley, D.J., Buckley, A.R., Pauletti, G.M., 2005. Nitric oxide mediates increased P-glycoprotein activity in interferon-g-stimulated human intestinal cells. Am. J. Gastrointest. Liver Physiol. 288, 533-540. https://doi.org/10.1152/ajpgi.00248.2004
  16. Dulak, J., Jozkowicz, A., Dembinska-Kiec, A., Guevara, I., Zdzienicka, A., Zmudzinska-Grochot, D., Florek, I., Wojtowicz, A., Szuba, A., Cooke, J. P., 2000. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 659-666. https://doi.org/10.1161/01.ATV.20.3.659
  17. Dutton, A.S., Fukuto, J.M., Houk, K.N., 2004. Mechanisms of HNO and NO production from Angeli's salt: density functional and CBS-QB3 theory predictions. J. Am. Chem. Soc. 126, 3795-3800. https://doi.org/10.1021/ja0391614
  18. Egleton, R.D., Campos, C.C., Huber, J.D., Brown, R.C., Davis, T.P., 2003. Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes. 52, 1496-1501. https://doi.org/10.2337/diabetes.52.6.1496
  19. Escobales, N. Crespo, M.J., 2005. Oxidative-nitrosative stress in hypertension. Curr. Vasc. Pharmacol. 3, 231-246. https://doi.org/10.2174/1570161054368643
  20. Essani, N.A. McGuire, G.M., Manning, A.M., Jaeschke, H., 1995. Differential induction of mRNA for ICAM-1 and selectins in hepatocytes, Kupffer cells and endothelial cells during endotoxemia. Biochem. Biophys. Res. Commun. 211, 74-82. https://doi.org/10.1006/bbrc.1995.1780
  21. Feelisch, M., Noack, E., 1987. Correlation between nitric oxide formation during degradation of organic nitrites and activation of guanylate cyclase. Eur. J. Pharmacol. 142, 465-469. https://doi.org/10.1016/0014-2999(87)90090-2
  22. Gharavi, N., El-Kadi, A.O., 2007. Role of nitric oxide in downregulation of cytochrome P450 1a1 and NADPH: Quinone oxidoreductase 1 by tumor necrosis factor-alpha and lipopolysaccharide. J. Pharm. Sci. 96, 2795-2807 https://doi.org/10.1002/jps.20910
  23. Goligorsky, M.S., Brodsky, S.V., Noiri, E., 2002. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int. 61, 855-861. https://doi.org/10.1046/j.1523-1755.2002.00233.x
  24. Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P. L., Wishnok, J. S., Tannenbaum, S. R., 1982. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  25. Grover, B., Buckley, D., Buckley, A.R., Cacini, W., 2004. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J. Pharmacol. Exp. Ther. 308, 949-956. https://doi.org/10.1124/jpet.103.058388
  26. Han, H., Kim, S.G., Lee, M.G., Shim, C.K., Chung, S.J., 2002. Mechanism of the reduced elimination clearance of benzylpenicillin from cerebrospinal fluid in rats with intracisternal administration of lipopolysaccharide. Drug Metab. Dispos. 30, 1214-1220. https://doi.org/10.1124/dmd.30.11.1214
  27. Hartmann, G., Vassileva, V., Piquette-Miller, M., 2005. Impact of endotoxin-induced changes in P-glycoprotein expression on disposition of doxorubicin in mice. Drug Metab. Dispos. 33, 820-828. https://doi.org/10.1124/dmd.104.002568
  28. Hawkins, B.T., Ocheltree, S.M., Norwood, K.M., Egleton, R.D., 2007. Decreased blood-brain barrier permeability to fluorescein in streptozotocin-treated rats. Leurosci. Lett. 411, 1-5. https://doi.org/10.1016/j.neulet.2006.09.010
  29. Heemskerk, S., van Koppen, A., van den Broek, L., Poelen, G.J., Wouterse, A.C., Dijkman, H.B., Russel, F.G., Masereeuw, R., 2007. Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch. 454, 321-334. https://doi.org/10.1007/s00424-007-0210-x
  30. Huie, R.E. Padmaja, S., 1993. The reaction of no with superoxide. Free Radic. Res. Commun.18, 195-199. https://doi.org/10.3109/10715769309145868
  31. Ischiropoulos, H., al-Mehdi, A.B., 1995. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 364, 279-282. https://doi.org/10.1016/0014-5793(95)00307-U
  32. Jaworowicz Jr, D.J., Korytko, P.J., Lakhman, S.S. Boje, K.M., 1998. Nitric oxide and prostaglandin E2 formation parallels blood-brain barrier disruption in an experimental rat model of bacterial meningitis. Brain Res. Bull. 46, 541-546. https://doi.org/10.1016/S0361-9230(98)00052-5
  33. Jiang, M., Wei, Q., Pabla, N., Dong, G., Wang, C.Y., Yang, T., Smith, S.B., Dong, Z., 2007. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73, 1499-1510. https://doi.org/10.1016/j.bcp.2007.01.010
  34. Josephine, A., Amudha, G., Veena, C.K., Preetha, S.P., Varalakshmi, P., 2007. Oxidative and nitrosative stress mediated renal cellular damage induced by cyclosporine A: role of sulphated polysaccharides. Biol. Pharm. Bull. 30, 1254-1259. https://doi.org/10.1248/bpb.30.1254
  35. Kalitsky-Szirtes, J., Shayeganpour, A., Brocks, D.R., Piquette-Miller, M., 2004. Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metab. Dispos. 32, 20-27. https://doi.org/10.1124/dmd.32.1.20
  36. Kimura, H., Miura, S., Shigematsu, T., Ohkubo, N., Tsuzuki, Y., Kurose, I., Higuchi, H., Akiba, Y., Hokari, R., Hirokawa, M., Serizawa H., Ishii, H., 1997. Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn's disease. Dig. Dis. Sci. 42, 1047-1054. https://doi.org/10.1023/A:1018849405922
  37. Kobayashi, T., Matsumoto, T., Kamata, K., 2000. Mechanisms underlying the chronic pravastatin treatment-induced improvement in the impaired endothelium-dependent aortic relaxation seen in streptozotocin-induced diabetic rats. Br. J. Pharmacol. 131, 231-238. https://doi.org/10.1038/sj.bjp.0703572
  38. Korenaga, D., Takesue, F., Kido, K., Yasuda, M., Inutsuka, S., Honda, M., Nagahama, S., 2002. Impaired antioxidant defense system of colonic tissue and cancer development in dextran sulfate sodium-induced colitis in mice. J. Surg. Res. 102, 144-149. https://doi.org/10.1006/jsre.2001.6314
  39. Korkmaz, A., Yaren, H., Topal T., Oter, S., 2006. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch. Toxicol. 80, 662-670. https://doi.org/10.1007/s00204-006-0089-x
  40. Kowaluk, E.A., Fung, H.L., 1991. Vascular nitric oxide-generating activities for organic nitrites and organic nitrates are distinct. J. Pharmacol. Exp. Ther. 259, 519-525.
  41. Kuhad, A., Tirkey, N., Pilkhwal, S., Chopra, K., 2006. Renoprotective effect of Spirulina fusiformis on cisplatin-induced oxidative stress and renal dysfunction in rats. Ren Fail. 28, 247-254. https://doi.org/10.1080/08860220600580399
  42. Kuo, M.T., Liu, Z., Wei, Y., Lin-Lee, Y.C., Tatebe, S., Mills, G.B., Unate, H., 2002. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling. Oncogene 21, 1945-1954. https://doi.org/10.1038/sj.onc.1205117
  43. Kusuhara, H., Sugiyama, Y., 2004. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv. Drug. Deliv. Rev. 56, 1741-1763. https://doi.org/10.1016/j.addr.2004.07.007
  44. Lass, P., Knudsen, G.M., 1990. Cerebral blood flow response to propranolol in streptozotocin diabetic rats. Neuroreport. 1, 232-234. https://doi.org/10.1097/00001756-199011000-00015
  45. Ling, H., Li, X., Jha, S., Wang, W., Karetskaya, L., Pratt, B., Ledbetter, S., 2003. Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J. Am. Soc. Nephrol 14, 377-388. https://doi.org/10.1097/01.ASN.0000042168.43665.9B
  46. Madrigal, J.L., García-Bueno, B., Caso, J.R., Perez-Nievas, B.G., Leza, J.C. 2006. Stress-induced oxidative changes in brain. CNS Neurol. Disord. Drug Targets 5, 561-568. https://doi.org/10.2174/187152706778559327
  47. Maeng, H.J., Kim, M.H., Jin, H.E., Shin, S.M., Tsuruo, T., Kim, S.G., Kim, D.D. Shim, C.K., Chung, S.J., 2007. Functional induction of P-glycoprotein in the blood-brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-kappaB, a nitrosative stress-sensitive transcription factor, in the regulation. Drug Metab. Dispos. 35, 1996-2005. https://doi.org/10.1124/dmd.107.015800
  48. Marfella, R., Cacciapuoti, F., Grassia, A., Manfredi, E., De Maio, G., Caruso, G., Pepe, M., Nittolo, G., Cacciapuoti, F., 2006. Role of the ubiquitin-proteasome system in carotid plaque instability in diabetic patients. Acta. Cardiol. 61, 630-636. https://doi.org/10.2143/AC.61.6.2017962
  49. Markesbery, W.R. Lovell, M.A., 1998. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol. Aging 19, 33-36. https://doi.org/10.1016/S0197-4580(98)00009-8
  50. Masuda, H., Tanaka, T., Takahama, U., 1994. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem. Biophys. Res. Commun. 203, 1175-1180. https://doi.org/10.1006/bbrc.1994.2306
  51. Mecocci, P., MacGarvey, U. Beal, M.F., 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36, 747-751. https://doi.org/10.1002/ana.410360510
  52. Minamizono, A., Tomi, M., Hosoya, K. 2006. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and -brain barriers in experimental diabetes. Biol. Pharm. Bull. 29, 2148-2150. https://doi.org/10.1248/bpb.29.2148
  53. Moncada, S., Bolanos, J.P., 2006. Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97, 1676-1689. https://doi.org/10.1111/j.1471-4159.2006.03988.x
  54. Mooradian, A.D., 1987. Blood-brain barrier choline transport is reduced in diabetic rats. Diabetes. 36, 1094-1097. https://doi.org/10.2337/diabetes.36.10.1094
  55. Niemi, M., Schaeffeler, E., Lang, T., Fromm, M.F., Neuvonen, M. Kyrklund, C., Backman, J.T., Kerb, R. Schwab, M., Neuvonen, P.J., Eichelbaum, M., Kivistö, K.T., 2004. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics. 14, 429-440. https://doi.org/10.1097/01.fpc.0000114750.08559.32
  56. Obrosova, I.G., Mabley, J.G., Zsengellér, Z., Charniauskaya, T. Abatan, O.I. Groves, J.T. Szabo, C., 2005. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB. J. 19, 401-403.
  57. Olsson, L.E., Wheeler, M.A. Sessa, W.C., Weiss, R.M., 1998. Bladder instillation and intraperitoneal injection of Escherichia coli lipopolysaccharide up-regulate cytokines and iNOS in rat urinary bladder. J. Pharmacol. Exp. Ther. 284, 1203-1208.
  58. Paik, J.Y., Lee, K.H., Ko, B.H, Choe, Y.S., Choi, Y., Kim, B.T., 2005. Nitric oxide stimulate 18F-FDG uptake in human endothelial cells through increased hexokinase activity and GLUT1 expression. J. Nucl. Med. 46, 365-370.
  59. Palmer, R.M., Ashton, D.S., Moncada, S., 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666. https://doi.org/10.1038/333664a0
  60. Park, S.U., Ferrer, J.V., Javitch, J.A., Kuhn, D.M., 2002. Peroxynitrite inactivates the human dopamine transporter by modification of cysteine 342: potential mechanism of neurotoxicity in dopamine neurons. J. Neurosci. 22, 4399-4405.
  61. Perez-Nievas, B.G., García-Bueno, B., Caso, J.R., Menchen, L., Leza, J.C., 2007. Corticosterone as a marker of susceptibility to oxidative/nitrosative cerebral damage after stress exposure in rats. Psychoneuroendocrinology. 32, 703-711. https://doi.org/10.1016/j.psyneuen.2007.04.011
  62. Rachmilewitz, D., Karmeli, F., Okon, E., Bursztyn, M., 1995. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut. 37, 247-255. https://doi.org/10.1136/gut.37.2.247
  63. Radi, R., 2004. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA. 101, 4003-4008. https://doi.org/10.1073/pnas.0307446101
  64. Reynolds, P.D., Middleton, S.J., Hunter, J.O., Facer, P., Bishop, A., Evans, T. Polak, J.M., 1995. High expression of iNOS in colonic mucosa in ulcerative colitis. Gastroenterology 108, A903.
  65. Ridnour, L.A., 2004. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 385, 1-10. https://doi.org/10.1515/BC.2004.001
  66. Romero, J.M., Bizzozero, O.A., 2006. Extracellular S-nitrosoglutathione, but not S-nitrosocysteine or $N_2O_3$, mediates protein S-nitrosation in rat spinal cord slices. J. Neurochem. 99, 1299-1310. https://doi.org/10.1111/j.1471-4159.2006.04180.x
  67. Sarandol, A., Sarandol, E., Eker, S.S., Erdinc, S., Vatansever, E., Kirli, S., 2007. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum. Psychopharmacol 22, 67-73. https://doi.org/10.1002/hup.829
  68. Schinkel, A.H., Wagenaar, E., van Deemter, L., Mol, C.A., Borst, P., 1995. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96, 1698-1705. https://doi.org/10.1172/JCI118214
  69. Schwartz, I.F., Chernichovsky, T., Hagin, D., 2006. Differential regulation of L-arginine transporters (cationic amino acid transporter-1 and -2) by peroxynitrite in rat mesangial cells. Nephrol. Dial. Transplant. 21, 3409-3414. https://doi.org/10.1093/ndt/gfl522
  70. Seril, D.N., Liao, J., Yang, G.Y., 2007. Colorectal carcinoma development in inducible nitric oxide synthase-deficient mice with dextran sulfate sodium-induced ulcerative colitis. Mol Carcinog. 46, 341-353. https://doi.org/10.1002/mc.20282
  71. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., Nagano, T., 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170-3175. https://doi.org/10.1074/jbc.M209264200
  72. Seven, I. Turkozkan, N. Cimen, B., 2005. The effects of nitric oxide synthesis on the Na+ ,K(+)-ATPase activity in guinea pig kidney exposed to lipopolysaccharides. Mol. Cell. Biochem. 271, 107-112. https://doi.org/10.1007/s11010-005-5616-1
  73. Shao, B., Bergt, C., Fu, X., 2005. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983-5893. https://doi.org/10.1074/jbc.M411484200
  74. Shen, S., Yu, S., Binek, J., Chalimoniuk, M., Zhang, X., Lo, S.C., Hannink, M., Wu, J., Fritsche, K., Donato, R., Sun, G.Y., 2005. Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int. 47, 298-307. https://doi.org/10.1016/j.neuint.2005.03.007
  75. Shen, Y., Yu, H.M., Yuan, T.M. Gu, W.Z., Wu, Y.D., 2007. Intrauterine infection induced oligodendrocyte injury and inducible nitric oxide synthase expression in the developing rat brain. J. Perinat. Med. 35, 203-209. https://doi.org/10.1515/JPM.2007.058
  76. Song, I.S., Lee, I.K., Chung, S.J., Kim, S.G., Lee, M.G., Shim, C.K., 2002. Effect of nitric oxide on the sinusoidal uptake of organic cations and anions by isolated hepatocytes. Arch. Pharm. Res. 25, 984-988. https://doi.org/10.1007/BF02977024
  77. Taguchi, K., Kobayashi, T., Hayashi, Y., Matsumoto, T. Kamata, K., 2007. Enalapril improves impairment of SERCA-derived relaxation and enhancement of tyrosine nitration in diabetic rat aorta. Eur. J. Pharmacol. 556, 121-128. https://doi.org/10.1016/j.ejphar.2006.11.026
  78. Taha, Z.H., 2003. Nitric oxide measurements in biological samples. Talanta. 61, 3-10. https://doi.org/10.1016/S0039-9140(03)00354-0
  79. Tahara, H., Shono, M., Kusuhara, H., Kinoshita, H., Fuse, E., Takedate, A., Otagiri, M., Sugiyama, Y., 2005. Molecular cloning and functional analysis of OAT1 and Oat3 from Synomolgus monkey kidney. Pharm. Res. 22, 647-660. https://doi.org/10.1007/s11095-005-2503-0
  80. Takahashi, M., Ogasawara, K., Takeda, K., Hashimoto, W., Sakihara, H., Kumagai, K., Anzai, R. Satoh, M., Seki, S., 1996. LPS induces NK1.1+ alpha beta T cells with potent cytotoxicity in the liver of mice via production of IL-12 from Kupffer cells. J. Immunol. 156, 2436-2442.
  81. Thevenod, F., Friedmann, J.M., Katsen, A.D., Hauser, I.A., 2000. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen speciesinduced apoptosis. J. Biol. Chem. 275, 1887-1896. https://doi.org/10.1074/jbc.275.3.1887
  82. Turkozkan, N., Unlu, A., Ertabak, A., Cimen, B., Karabicak, U., 2001. The effects of peroxynitrite on erythrocytes. Clin. Chem. Lab. Med. 39, 1263-1266. https://doi.org/10.1515/CCLM.2001.203
  83. Uchiyama, T., Matsuda, Y., Wada, M., Takahashi, S., Fujita, T., 2005. Functional regulation of Na+-dependent neutral amino acid transporter ASCT2 by S-nitrosothiols and nitric oxide in Caco-2 cells. FEBS Lett. 579, 2499-2506. https://doi.org/10.1016/j.febslet.2005.03.065
  84. Unlu, A.N., Turkozkan, B., Cimen, Karabicak, U., Yaman, H., 2001. The effect of Escherichia coli-derived lipopolysaccharides on plasma levels of malondialdehyde and 3-nitrotyrosine. Clin. Chem. Lab. Med 39, 491-493. https://doi.org/10.1515/CCLM.2001.081
  85. Van Waarde, W.M., Verkade, H.J., Wolters, H., Havinga, R., Baller, J., Bloks, V., Müller, M., Sauer, P. J., Kuipers, F., 2002. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats. Gastroenterology. 122, 1842-1852. https://doi.org/10.1053/gast.2002.33582
  86. Vodovotz, Y., Chesler, L., Chong, H., Kim, S.J., Simpson, J.T., 1999. W. DeGraff, G.W. Cox, A.B. Roberts, D.A. Wink and M.H. Barcellos-Hoff, Regulation of transforming growth factor beta1 by nitric oxide, Cancer Res., 59, 2142-2149.
  87. Wang, J.H., Scollard, D.A., Teng, S., Reilly, R.M., Piquette-Miller, M., 2005. Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J. Nucl. Med. 46, 1537-1545.
  88. Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T. Janczuk, A. J., 2002. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 102, 1091-1134. https://doi.org/10.1021/cr000040l
  89. Yamamoto, T., Bing, R. J., 2000. Nitric oxide donors. Proc. Soc. Exp. Biol. Med. 225, 200-206. https://doi.org/10.1046/j.1525-1373.2000.22525.x
  90. Yamauchi, A., Dohgu, S., Nishioku, T., Shuto, H., Naito, M., Tsuruo, T., Sawada, Y., Kataoka, Y., 2007. An inhibitory role of nitric oxide in the dynamic regulation of the blood-brain barrier function. Cell. Mol. Neurobiol. 27, 263-270. https://doi.org/10.1007/s10571-007-9139-z
  91. Yaren, H., Mollaoglu, H., Kurt, B., Korkmaz, A., Oter, S., Topal T., Karayilanoglu, T., 2007. Lung toxicity of nitrogen mustard may be mediated by nitric oxide and peroxynitrite in rats. Res. Vet. Sci. 83, 116-122. https://doi.org/10.1016/j.rvsc.2006.11.004
  92. Zhang, C. Walker, L.M. Mayeux, P.R., 2000. Role of nitric oxide in lipopolysaccharide-induced oxidant stress in the rat kidney. Biochem. Pharmacol. 59, 203-209. https://doi.org/10.1016/S0006-2952(99)00324-X
  93. Zhou, G., Kuo, M.T., 1997. NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J. Biol. Chem. 272, 15174-15183. https://doi.org/10.1074/jbc.272.24.15174