Browse > Article
http://dx.doi.org/10.4333/KPS.2010.40.3.139

Functional Implications of Transporters Under Nitrosative Stress Conditions  

Yu, Kyung-Ha (College of Pharmacy, Seoul National University)
Maeng, Han-Joo (College of Pharmacy, Seoul National University)
Chung, Suk-Jae (College of Pharmacy, Seoul National University)
Publication Information
Journal of Pharmaceutical Investigation / v.40, no.3, 2010 , pp. 139-153 More about this Journal
Abstract
Nitrosative stress is defined as pathophysiological conditions that are related to covalent modifications of proteins by nitration/nitrosylation by forms of nitrogen oxide ($NO_x$), leading to DNA damage, ultimately, cell death. This type of stress condition appears to be associated with a number of disease states, including diabetes, inflammation and neurodegenerative diseases. Since these pathological conditions are frequently chronic in nature and, thus, require long-term treatment, changes in pharmacokinetics are likely to affect the therapy. Transporters are membrane proteins that facilitate the movement of substrates, including drugs, across plasma membranes of epithelial / endothelial cells. Since it is now increasingly evident that transporters are pharmacokinetically significant, functional alteration of transporters by this stress condition may have therapeutic relevance. In this review, experimental techniques that are used to study both in vivo and in vitro nitrosative stress are summarized and discussed, along with available literature information on the functional implication of transporters under conditions of nitrosative stress conditions. In the literature, both functional induction and impa irment were apparently present for both drug transporter families [i.e., ATP-binding cassette (ABC) and solute carrier families (SLC)]. Furthermore, a change in the function of a certain transporter appears to have temporal dependency by impairment in the early phase of nitrosative stress and induction thereafter, suggesting that the role of nitrosative stress is complex in terms of functional implications of the transporters. Although the underlying mechanisms for these alterations are not fully understood, protein nitration/nitrosylation appears to be involved in the functional impairment whereas transcript factor(s) activated by nitrosative stress may play a role, at least in part, in functional induction. Interestingly, functional induction under conditions of nitrosative stress has not been observed for SLC transporters while such impairment has been documented for both ABC and SLC transporters. Further investigations appear to be necessary to fully delineate the underlying reasons for these differences on the impact and importance of nitrosative stress conditions.
Keywords
Nitrosative stress; Nox; Functional alteration of Transporters; Nitrosative stress models; Nox donors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hartmann, G., Vassileva, V., Piquette-Miller, M., 2005. Impact of endotoxin-induced changes in P-glycoprotein expression on disposition of doxorubicin in mice. Drug Metab. Dispos. 33, 820-828.   DOI
2 Hawkins, B.T., Ocheltree, S.M., Norwood, K.M., Egleton, R.D., 2007. Decreased blood-brain barrier permeability to fluorescein in streptozotocin-treated rats. Leurosci. Lett. 411, 1-5.   DOI
3 Heemskerk, S., van Koppen, A., van den Broek, L., Poelen, G.J., Wouterse, A.C., Dijkman, H.B., Russel, F.G., Masereeuw, R., 2007. Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch. 454, 321-334.   DOI
4 Huie, R.E. Padmaja, S., 1993. The reaction of no with superoxide. Free Radic. Res. Commun.18, 195-199.   DOI
5 Ischiropoulos, H., al-Mehdi, A.B., 1995. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 364, 279-282.   DOI
6 Dulak, J., Jozkowicz, A., Dembinska-Kiec, A., Guevara, I., Zdzienicka, A., Zmudzinska-Grochot, D., Florek, I., Wojtowicz, A., Szuba, A., Cooke, J. P., 2000. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 659-666.   DOI   ScienceOn
7 Dutton, A.S., Fukuto, J.M., Houk, K.N., 2004. Mechanisms of HNO and NO production from Angeli's salt: density functional and CBS-QB3 theory predictions. J. Am. Chem. Soc. 126, 3795-3800.   DOI
8 Egleton, R.D., Campos, C.C., Huber, J.D., Brown, R.C., Davis, T.P., 2003. Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes. 52, 1496-1501.   DOI
9 Escobales, N. Crespo, M.J., 2005. Oxidative-nitrosative stress in hypertension. Curr. Vasc. Pharmacol. 3, 231-246.   DOI
10 Essani, N.A. McGuire, G.M., Manning, A.M., Jaeschke, H., 1995. Differential induction of mRNA for ICAM-1 and selectins in hepatocytes, Kupffer cells and endothelial cells during endotoxemia. Biochem. Biophys. Res. Commun. 211, 74-82.   DOI
11 Feelisch, M., Noack, E., 1987. Correlation between nitric oxide formation during degradation of organic nitrites and activation of guanylate cyclase. Eur. J. Pharmacol. 142, 465-469.   DOI
12 Gharavi, N., El-Kadi, A.O., 2007. Role of nitric oxide in downregulation of cytochrome P450 1a1 and NADPH: Quinone oxidoreductase 1 by tumor necrosis factor-alpha and lipopolysaccharide. J. Pharm. Sci. 96, 2795-2807   DOI
13 Goligorsky, M.S., Brodsky, S.V., Noiri, E., 2002. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int. 61, 855-861.   DOI
14 Chen, C.F., Leu, F.J., Chen, H.I., Wang, D., Chou, S.J., 2006. Lack of a protective effect of insulin on three reperfusion-liver injury models in rats and mice. Transplant. Proc. 38, 2221-2225.   DOI
15 Cherrington, N.J., Slitt, A.L., Li, N., Klaassen, C.D., 2004. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispo. 30, 838-844.
16 Chirino, Y.I., Hernandez-Pando, R., Pedraza-Chaverrí, J., 2004. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 30, 4-20.
17 Chung, S.J., Chong, S., Seth, P., Jung, C.Y., Fung, H.L., 1992. Conversion of nitroglycerin to nitric oxide in microsomes of the bovine coronary artery smooth muscle is not primarily mediated by glutathione-S-transferases. J. Pharmacol. Exp. Ther. 260, 652-659.
18 Chung, J.Y., Cho, J.Y., Yu, K.S., Kim, J.R., Oh, D.S., Jung, H.R., Lim, K.S., Moon, K.H., Shin S.G., Jang, I.J., 2005. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 78, 342-350.   DOI
19 Chung, K.K., Dawson, T.M., Dawson, V.L., 2005. Nitric oxide, Snitrosylation and neurodegeneration. Cell. Mo.l Biol. 51, 247-254.
20 Chung, S.J., Fung, H.L., 1990. Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary artery smooth muscle cells. J. Pharmacol. Exp. Ther. 253, 614-619.
21 Dixit, S.G., Zingarelli, B., Buckley, D.J., Buckley, A.R., Pauletti, G.M., 2005. Nitric oxide mediates increased P-glycoprotein activity in interferon-g-stimulated human intestinal cells. Am. J. Gastrointest. Liver Physiol. 288, 533-540.   DOI
22 Bauer, B., Hartz, A.M., Miller, D.S., 2007. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol. Pharmacol. 71, 667-675.   DOI
23 Bernstein, H., Holubec, H., Bernstein, C., Ignatenko, N., Gerner, E., Dvorak, K., Besselsen, D., Ramsey, L., Dall'Agnol, M., Blohm-Mangone, K., Padilla-Torres, A.J., Cui, H., Garewal, H., Payne, C. M., 2006. Unique dietary-related mouse model of colitis. Inflamm. Bowel. Dis. 12, 278-293.   DOI
24 Zhou, G., Kuo, M.T., 1997. NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J. Biol. Chem. 272, 15174-15183.   DOI
25 Yamauchi, A., Dohgu, S., Nishioku, T., Shuto, H., Naito, M., Tsuruo, T., Sawada, Y., Kataoka, Y., 2007. An inhibitory role of nitric oxide in the dynamic regulation of the blood-brain barrier function. Cell. Mol. Neurobiol. 27, 263-270.   DOI
26 Yaren, H., Mollaoglu, H., Kurt, B., Korkmaz, A., Oter, S., Topal T., Karayilanoglu, T., 2007. Lung toxicity of nitrogen mustard may be mediated by nitric oxide and peroxynitrite in rats. Res. Vet. Sci. 83, 116-122.   DOI
27 Zhang, C. Walker, L.M. Mayeux, P.R., 2000. Role of nitric oxide in lipopolysaccharide-induced oxidant stress in the rat kidney. Biochem. Pharmacol. 59, 203-209.   DOI
28 Cai, L., Wang, J., Li, Y., Sun, X., Wang, L., Zhou, Z., Kang, Y.J., 2005. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54, 1829-1837.   DOI
29 Bridges, C.C., Ola, M.S., Prasad, P.D., El-sherbeny, A., Ganapathy, V., Smith, S. B., 2001. Regulation of taurine transporter expression by NO in cultured human retinal pigment epithelial cells. Am. J. Physiol. Cell. Physiol. 281, C1825-C1836.   DOI
30 Buffoli, B., Pechanova, O., Kojsova, S., Andriantsitohaina, R., Giugno, L., Bianchi, R., Rezzani, R., 2005. Provinol prevents CsA-induced nephrotoxicity by reducing reactive oxygen species, iNOS, and $NF-_{kappa}B$ expression. J. Histochem. Cytochem. 53, 1459-1468.   DOI
31 Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J.B., Pierce, W.M., Booze, R., Markesbery, W.R., Butterfield, D. A., 2002. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 33, 562-571.   DOI
32 Celedon, G., Gonzalez, G., Pino, J., Lissi, E.A., 2007. Peroxynitrite oxidizes erythrocyte membrane band 3 protein and diminishes its anion transport capacity. Free Radic. Res. 41, 316-323.   DOI
33 Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T. Janczuk, A. J., 2002. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 102, 1091-1134.   DOI   ScienceOn
34 Van Waarde, W.M., Verkade, H.J., Wolters, H., Havinga, R., Baller, J., Bloks, V., Müller, M., Sauer, P. J., Kuipers, F., 2002. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats. Gastroenterology. 122, 1842-1852.   DOI
35 Vodovotz, Y., Chesler, L., Chong, H., Kim, S.J., Simpson, J.T., 1999. W. DeGraff, G.W. Cox, A.B. Roberts, D.A. Wink and M.H. Barcellos-Hoff, Regulation of transforming growth factor beta1 by nitric oxide, Cancer Res., 59, 2142-2149.
36 Wang, J.H., Scollard, D.A., Teng, S., Reilly, R.M., Piquette-Miller, M., 2005. Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J. Nucl. Med. 46, 1537-1545.
37 Yamamoto, T., Bing, R. J., 2000. Nitric oxide donors. Proc. Soc. Exp. Biol. Med. 225, 200-206.   DOI
38 Tahara, H., Shono, M., Kusuhara, H., Kinoshita, H., Fuse, E., Takedate, A., Otagiri, M., Sugiyama, Y., 2005. Molecular cloning and functional analysis of OAT1 and Oat3 from Synomolgus monkey kidney. Pharm. Res. 22, 647-660.   DOI
39 Taguchi, K., Kobayashi, T., Hayashi, Y., Matsumoto, T. Kamata, K., 2007. Enalapril improves impairment of SERCA-derived relaxation and enhancement of tyrosine nitration in diabetic rat aorta. Eur. J. Pharmacol. 556, 121-128.   DOI
40 Taha, Z.H., 2003. Nitric oxide measurements in biological samples. Talanta. 61, 3-10.   DOI
41 Uchiyama, T., Matsuda, Y., Wada, M., Takahashi, S., Fujita, T., 2005. Functional regulation of Na+-dependent neutral amino acid transporter ASCT2 by S-nitrosothiols and nitric oxide in Caco-2 cells. FEBS Lett. 579, 2499-2506.   DOI
42 Takahashi, M., Ogasawara, K., Takeda, K., Hashimoto, W., Sakihara, H., Kumagai, K., Anzai, R. Satoh, M., Seki, S., 1996. LPS induces NK1.1+ alpha beta T cells with potent cytotoxicity in the liver of mice via production of IL-12 from Kupffer cells. J. Immunol. 156, 2436-2442.
43 Thevenod, F., Friedmann, J.M., Katsen, A.D., Hauser, I.A., 2000. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen speciesinduced apoptosis. J. Biol. Chem. 275, 1887-1896.   DOI
44 Turkozkan, N., Unlu, A., Ertabak, A., Cimen, B., Karabicak, U., 2001. The effects of peroxynitrite on erythrocytes. Clin. Chem. Lab. Med. 39, 1263-1266.   DOI
45 Unlu, A.N., Turkozkan, B., Cimen, Karabicak, U., Yaman, H., 2001. The effect of Escherichia coli-derived lipopolysaccharides on plasma levels of malondialdehyde and 3-nitrotyrosine. Clin. Chem. Lab. Med 39, 491-493.   DOI
46 Seril, D.N., Liao, J., Yang, G.Y., 2007. Colorectal carcinoma development in inducible nitric oxide synthase-deficient mice with dextran sulfate sodium-induced ulcerative colitis. Mol Carcinog. 46, 341-353.   DOI
47 Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., Nagano, T., 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170-3175.   DOI   ScienceOn
48 Shen, S., Yu, S., Binek, J., Chalimoniuk, M., Zhang, X., Lo, S.C., Hannink, M., Wu, J., Fritsche, K., Donato, R., Sun, G.Y., 2005. Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int. 47, 298-307.   DOI
49 Seven, I. Turkozkan, N. Cimen, B., 2005. The effects of nitric oxide synthesis on the Na+ ,K(+)-ATPase activity in guinea pig kidney exposed to lipopolysaccharides. Mol. Cell. Biochem. 271, 107-112.   DOI
50 Shao, B., Bergt, C., Fu, X., 2005. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983-5893.   DOI
51 Shen, Y., Yu, H.M., Yuan, T.M. Gu, W.Z., Wu, Y.D., 2007. Intrauterine infection induced oligodendrocyte injury and inducible nitric oxide synthase expression in the developing rat brain. J. Perinat. Med. 35, 203-209.   DOI
52 Song, I.S., Lee, I.K., Chung, S.J., Kim, S.G., Lee, M.G., Shim, C.K., 2002. Effect of nitric oxide on the sinusoidal uptake of organic cations and anions by isolated hepatocytes. Arch. Pharm. Res. 25, 984-988.   과학기술학회마을   DOI
53 Rachmilewitz, D., Karmeli, F., Okon, E., Bursztyn, M., 1995. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut. 37, 247-255.   DOI
54 Radi, R., 2004. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA. 101, 4003-4008.   DOI
55 Reynolds, P.D., Middleton, S.J., Hunter, J.O., Facer, P., Bishop, A., Evans, T. Polak, J.M., 1995. High expression of iNOS in colonic mucosa in ulcerative colitis. Gastroenterology 108, A903.
56 Schinkel, A.H., Wagenaar, E., van Deemter, L., Mol, C.A., Borst, P., 1995. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96, 1698-1705.   DOI
57 Ridnour, L.A., 2004. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 385, 1-10.   DOI
58 Romero, J.M., Bizzozero, O.A., 2006. Extracellular S-nitrosoglutathione, but not S-nitrosocysteine or $N_2O_3$, mediates protein S-nitrosation in rat spinal cord slices. J. Neurochem. 99, 1299-1310.   DOI
59 Sarandol, A., Sarandol, E., Eker, S.S., Erdinc, S., Vatansever, E., Kirli, S., 2007. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum. Psychopharmacol 22, 67-73.   DOI
60 Schwartz, I.F., Chernichovsky, T., Hagin, D., 2006. Differential regulation of L-arginine transporters (cationic amino acid transporter-1 and -2) by peroxynitrite in rat mesangial cells. Nephrol. Dial. Transplant. 21, 3409-3414.   DOI
61 Niemi, M., Schaeffeler, E., Lang, T., Fromm, M.F., Neuvonen, M. Kyrklund, C., Backman, J.T., Kerb, R. Schwab, M., Neuvonen, P.J., Eichelbaum, M., Kivistö, K.T., 2004. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics. 14, 429-440.   DOI
62 Obrosova, I.G., Mabley, J.G., Zsengellér, Z., Charniauskaya, T. Abatan, O.I. Groves, J.T. Szabo, C., 2005. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB. J. 19, 401-403.
63 Park, S.U., Ferrer, J.V., Javitch, J.A., Kuhn, D.M., 2002. Peroxynitrite inactivates the human dopamine transporter by modification of cysteine 342: potential mechanism of neurotoxicity in dopamine neurons. J. Neurosci. 22, 4399-4405.
64 Olsson, L.E., Wheeler, M.A. Sessa, W.C., Weiss, R.M., 1998. Bladder instillation and intraperitoneal injection of Escherichia coli lipopolysaccharide up-regulate cytokines and iNOS in rat urinary bladder. J. Pharmacol. Exp. Ther. 284, 1203-1208.
65 Paik, J.Y., Lee, K.H., Ko, B.H, Choe, Y.S., Choi, Y., Kim, B.T., 2005. Nitric oxide stimulate 18F-FDG uptake in human endothelial cells through increased hexokinase activity and GLUT1 expression. J. Nucl. Med. 46, 365-370.
66 Palmer, R.M., Ashton, D.S., Moncada, S., 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666.   DOI
67 Perez-Nievas, B.G., García-Bueno, B., Caso, J.R., Menchen, L., Leza, J.C., 2007. Corticosterone as a marker of susceptibility to oxidative/nitrosative cerebral damage after stress exposure in rats. Psychoneuroendocrinology. 32, 703-711.   DOI
68 Maeng, H.J., Kim, M.H., Jin, H.E., Shin, S.M., Tsuruo, T., Kim, S.G., Kim, D.D. Shim, C.K., Chung, S.J., 2007. Functional induction of P-glycoprotein in the blood-brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-kappaB, a nitrosative stress-sensitive transcription factor, in the regulation. Drug Metab. Dispos. 35, 1996-2005.   DOI
69 Marfella, R., Cacciapuoti, F., Grassia, A., Manfredi, E., De Maio, G., Caruso, G., Pepe, M., Nittolo, G., Cacciapuoti, F., 2006. Role of the ubiquitin-proteasome system in carotid plaque instability in diabetic patients. Acta. Cardiol. 61, 630-636.   DOI
70 Markesbery, W.R. Lovell, M.A., 1998. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol. Aging 19, 33-36.   DOI
71 Masuda, H., Tanaka, T., Takahama, U., 1994. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem. Biophys. Res. Commun. 203, 1175-1180.   DOI
72 Mecocci, P., MacGarvey, U. Beal, M.F., 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36, 747-751.   DOI
73 Minamizono, A., Tomi, M., Hosoya, K. 2006. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and -brain barriers in experimental diabetes. Biol. Pharm. Bull. 29, 2148-2150.   DOI
74 Moncada, S., Bolanos, J.P., 2006. Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97, 1676-1689.   DOI
75 Mooradian, A.D., 1987. Blood-brain barrier choline transport is reduced in diabetic rats. Diabetes. 36, 1094-1097.   DOI
76 Kuhad, A., Tirkey, N., Pilkhwal, S., Chopra, K., 2006. Renoprotective effect of Spirulina fusiformis on cisplatin-induced oxidative stress and renal dysfunction in rats. Ren Fail. 28, 247-254.   DOI
77 Kuo, M.T., Liu, Z., Wei, Y., Lin-Lee, Y.C., Tatebe, S., Mills, G.B., Unate, H., 2002. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling. Oncogene 21, 1945-1954.   DOI
78 Kusuhara, H., Sugiyama, Y., 2004. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv. Drug. Deliv. Rev. 56, 1741-1763.   DOI
79 Ling, H., Li, X., Jha, S., Wang, W., Karetskaya, L., Pratt, B., Ledbetter, S., 2003. Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J. Am. Soc. Nephrol 14, 377-388.   DOI
80 Lass, P., Knudsen, G.M., 1990. Cerebral blood flow response to propranolol in streptozotocin diabetic rats. Neuroreport. 1, 232-234.   DOI
81 Madrigal, J.L., García-Bueno, B., Caso, J.R., Perez-Nievas, B.G., Leza, J.C. 2006. Stress-induced oxidative changes in brain. CNS Neurol. Disord. Drug Targets 5, 561-568.   DOI
82 Korkmaz, A., Yaren, H., Topal T., Oter, S., 2006. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch. Toxicol. 80, 662-670.   DOI
83 Kowaluk, E.A., Fung, H.L., 1991. Vascular nitric oxide-generating activities for organic nitrites and organic nitrates are distinct. J. Pharmacol. Exp. Ther. 259, 519-525.
84 Jaworowicz Jr, D.J., Korytko, P.J., Lakhman, S.S. Boje, K.M., 1998. Nitric oxide and prostaglandin E2 formation parallels blood-brain barrier disruption in an experimental rat model of bacterial meningitis. Brain Res. Bull. 46, 541-546.   DOI
85 Jiang, M., Wei, Q., Pabla, N., Dong, G., Wang, C.Y., Yang, T., Smith, S.B., Dong, Z., 2007. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem. Pharmacol. 73, 1499-1510.   DOI
86 Josephine, A., Amudha, G., Veena, C.K., Preetha, S.P., Varalakshmi, P., 2007. Oxidative and nitrosative stress mediated renal cellular damage induced by cyclosporine A: role of sulphated polysaccharides. Biol. Pharm. Bull. 30, 1254-1259.   DOI
87 Korenaga, D., Takesue, F., Kido, K., Yasuda, M., Inutsuka, S., Honda, M., Nagahama, S., 2002. Impaired antioxidant defense system of colonic tissue and cancer development in dextran sulfate sodium-induced colitis in mice. J. Surg. Res. 102, 144-149.   DOI
88 Kalitsky-Szirtes, J., Shayeganpour, A., Brocks, D.R., Piquette-Miller, M., 2004. Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metab. Dispos. 32, 20-27.   DOI
89 Kimura, H., Miura, S., Shigematsu, T., Ohkubo, N., Tsuzuki, Y., Kurose, I., Higuchi, H., Akiba, Y., Hokari, R., Hirokawa, M., Serizawa H., Ishii, H., 1997. Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn's disease. Dig. Dis. Sci. 42, 1047-1054.   DOI
90 Kobayashi, T., Matsumoto, T., Kamata, K., 2000. Mechanisms underlying the chronic pravastatin treatment-induced improvement in the impaired endothelium-dependent aortic relaxation seen in streptozotocin-induced diabetic rats. Br. J. Pharmacol. 131, 231-238.   DOI
91 Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P. L., Wishnok, J. S., Tannenbaum, S. R., 1982. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131-138.   DOI
92 Grover, B., Buckley, D., Buckley, A.R., Cacini, W., 2004. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J. Pharmacol. Exp. Ther. 308, 949-956.   DOI
93 Han, H., Kim, S.G., Lee, M.G., Shim, C.K., Chung, S.J., 2002. Mechanism of the reduced elimination clearance of benzylpenicillin from cerebrospinal fluid in rats with intracisternal administration of lipopolysaccharide. Drug Metab. Dispos. 30, 1214-1220.   DOI