• 제목/요약/키워드: ATMT

검색결과 13건 처리시간 0.029초

선박 및 실내 N-스크린 서비스를 위한 비동기 트래픽 멀티홉 전송 기술 (Asynchronous Traffic Multi-Hop Transmission Scheme for N-Screen Services in Indoor and Ship Area Networks)

  • 허경;이성로
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.950-956
    • /
    • 2015
  • 본 논문에서는 선박 및 실내 Seamless N-스크린 서비스를 위한 무선 통신 MAC 구조로서, WiMedia Distributed-MAC (D-MAC) 프로토콜을 적용하고, Seamless D-MAC 프로토콜에서 P2P 스트리밍이 가능한 OSMU (One Source Multi Use) N-스크린 서비스를 제공하기 위해, 비동기 트래픽 멀티홉 전송 기술(Asynchronous Traffic Multi-Hop Transmission : ATMT)을 제안하고 성능을 분석하였다. 센서장비에 장착되는 무선통신 모듈은 선내 통합유무선 네트워크와의 원활한 연결을 위하여 무선 게이트웨이 기능을 수행하는 WiMedia ATMT D-MAC 브릿지를 통해 데이터가 전송된다. 이를 위해 WiMedia 비동기 트래픽을 위한 타임 슬롯 할당 기술과 Multi-hop 자원 예약기술을 결합하여 각 기술에 대해 성능을 비교 분석하였다. 시뮬레이션 결과를 통해, 비동기 트래픽 멀티홉 전송 기술은 비동기식 N-스크린 데이터 전송에 있어, 기존 D-MAC 방식보다 향상된 지연시간 및 수율 성능을 나타내었다.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Development of a Transformation System for the Medicinal Fungus Sanghuangporus baumii and Acquisition of High-Value Strain

  • Zengcai Liu;Ruipeng Liu;Li Zou
    • Mycobiology
    • /
    • 제51권3호
    • /
    • pp.169-177
    • /
    • 2023
  • To further explore the molecular mechanism of triterpenoid biosynthesis and acquire high-value strain of Sanghuangporus baumii, the Agrobacterium tumefaciens-mediated transformation (ATMT) system was studied. The key triterpenoid biosynthesis-associated gene isopentenyl diphosphate isomerase (IDI) was transformed into S. baumii by ATMT system. Then, the qRT-PCR technique was used to analyze gene transcript level, and the widely targeted metabolomics was used to investigate individual triterpenoid content. Total triterpenoid content and anti-oxidant activity were determined by spectrophotometer. In this study, we for the first time established an efficient ATMT system and transferred the IDI gene into S. baumii. Relative to the wild-type (WT) strain, the IDI-transformant (IT) strain showed significantly higher transcript levels of IDI and total triterpenoid content. We then investigated individual triterpenoids in S. baumii, which led to the identification of 10 distinct triterpenoids. The contents of individual triterpenoids produced by the IT2 strain were 1.76-10.03 times higher than those produced by the WT strain. The triterpenoid production showed a significant positive correlation with the IDI gene expression. Besides, IT2 strain showed better anti-oxidant activity. The findings provide valuable information about the biosynthetic pathway of triterpenoids and provide a strategy for cultivating high-value S. baumii strains.

Agrobactrium tumefaciens-Mediated Transformation of Monascus ruber

  • Yang, Yun-Jung;Lee, In-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.754-758
    • /
    • 2008
  • Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied to Monascus ruber. The optimum cocultivation time was 84 h with an efficiency of 900 to 1,000 transformants when $1{\times}10^6$ spores were used with the same volume of bacteria. The stability of transform ants was over 98% after five generations. When M. ruber was transformed with A. tumefaciens YL-63 containing the green fluorescent protein gene (egfp), the green fluorescent signal was observed throughout hyphae, confirming expression of the gene. This efficient transformation and expression system of M. ruber by ATMT will facilitate the study of this fungus at a molecular genetic level.

Agrobacterium tumefaciens-mediated Transformation in Colletotrichum falcatum and C. acutatum

  • Maruthachalam, Karunakaran;Nair, Vijayan;Rho, Hee-Sool;Choi, Jae-Hyuk;Kim, Soon-Ok;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.234-241
    • /
    • 2008
  • Agrobacterum tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with co-cultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.

Optimization of Agrobacterium tumefaciens-Mediated Transformation of Xylaria grammica EL000614, an Endolichenic Fungus Producing Grammicin

  • Jeong, Min-Hye;Kim, Jung A.;Kang, Seogchan;Choi, Eu Ddeum;Kim, Youngmin;Lee, Yerim;Jeon, Mi Jin;Yu, Nan Hee;Park, Ae Ran;Kim, Jin-Cheol;Kim, Soonok;Park, Sook-Young
    • Mycobiology
    • /
    • 제49권5호
    • /
    • pp.491-497
    • /
    • 2021
  • An endolichenic fungus Xylaria grammica EL000614 produces grammicin, a potent nematicidal pyrone derivative that can serve as a new control option for root-knot nematodes. We optimized an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for X. grammica to support genetic studies. Transformants were successfully generated after co-cultivation of homogenized young mycelia of X. grammica with A. tumefaciens strain AGL-1 carrying a binary vector that contains the bacterial hygromycin B phosphotransferase (hph) gene and the eGFP gene in T-DNA. The resulting transformants were mitotically stable, and PCR analysis showed the integratin of both genes in the genome of transformants. Expression of eGFP was confirmed via fluorescence microscopy. Southern analysis showed that 131 (78.9%) out of 166 transformants contained a single T-DNA insertion. Crucial factors for producing predominantly single T-DNA transformants include 48 h of co-cultivation, pretreatment of A. tumefaciens cells with acetosyringone before co-cultivation, and using freshly prepared mycelia. The established ATMT protocol offers an efficient tool for random insertional mutagenesis and gene transfer in studying the biology and ecology of X. grammica.

A Dual Selection Marker Transformation System Using Agrobacterium tumefaciens for the Industrial Aspergillus oryzae 3.042

  • Sun, Yunlong;Niu, Yali;He, Bin;Ma, Long;Li, Ganghua;Tran, Van-Tuan;Zeng, Bin;Hu, Zhihong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.230-234
    • /
    • 2019
  • Currently, the genetic modification of Aspergillus oryzae is mainly dependent on protoplast-mediated transformation (PMT). In this study, we established a dual selection marker system in an industrial A. oryzae 3.042 strain by using Agrobacterium tumefaciens-mediated transformation (ATMT). We first constructed a uridine/uracil auxotrophic A. oryzae 3.042 strain and a pyrithiamine (PT)-resistance binary vector. Then, we established the ATMT system by using uridine/uracil auxotrophy and PT-resistance genes as selection markers. Finally, a dual selection marker ATMT system was developed. This study demonstrates a useful dual selection marker transformation system for genetic manipulations of A. oryzae 3.042.

An Enzymolysis-Assisted Agrobacterium tumefaciens-Mediated Transformation Method for the Yeast-Like Cells of Tremella fuciformis

  • Wang, Yuanyuan;Xu, Danyun;Sun, Xueyan;Zheng, Lisheng;Chen, Liguo;Ma, Aimin
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.59-65
    • /
    • 2019
  • Agrobacterium tumefaciens-mediated transformation (ATMT), as a simple and versatile method, achieves successful transformation in the yeast-like cells (YLCs) of Tremella fuciformis with lower efficiency. Establishment of a more efficient transformation system of YLCs is important for functional genomics research and biotechnological application. In this study, an enzymolysis-assisted ATMT method was developed. The degradation degree of YLCs depends on the concentration and digestion time of Lywallzyme. Lower concentration (${\leq}0.1%$) of Lywallzyme was capable of formation of limited wounds on the surface of YLCs and has less influence on their growth. In addition, there is no significant difference of YLCs growth among groups treated with 0.1% Lywallzyme for different time. The binary vector pGEH under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter was utilized to transform the enzymolytic wounded YLCs with different concentrations and digestion time. The results of PCR, Southern blot, quantitative real-time PCR (qRT-PCR) and fluorescence microscopy revealed that the T-DNA was integrated into the YLCs genome, suggesting an efficient enzymolysis-assisted ATMT method of YLCs was established. The highest transformation frequency reached 1200 transformants per $10^6$ YLCs by 0.05% (w/v) Lywallzyme digestion for 15 min, and the transformants were genetically stable. Compared with the mechanical wounding methods, enzymolytic wounding is thought to be a tender, safer and more effective method.

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung;Kim, Kyoung-Su;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.8-16
    • /
    • 2010
  • The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo;Zhang, Jian;Xu, Rui;Lv, Xinxin;Wang, Lihua;Sun, Aiyou;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1924-1932
    • /
    • 2016
  • Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.