Browse > Article
http://dx.doi.org/10.1080/12298093.2021.1961431

Optimization of Agrobacterium tumefaciens-Mediated Transformation of Xylaria grammica EL000614, an Endolichenic Fungus Producing Grammicin  

Jeong, Min-Hye (Department of Plant Medicine, Sunchon National University)
Kim, Jung A. (Microorganism Resources Division, National Institute of Biological Resources)
Kang, Seogchan (Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University)
Choi, Eu Ddeum (Department of Plant Medicine, Sunchon National University)
Kim, Youngmin (Department of Plant Medicine, Sunchon National University)
Lee, Yerim (Department of Plant Medicine, Sunchon National University)
Jeon, Mi Jin (Microorganism Resources Division, National Institute of Biological Resources)
Yu, Nan Hee (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University)
Park, Ae Ran (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University)
Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University)
Kim, Soonok (Microorganism Resources Division, National Institute of Biological Resources)
Park, Sook-Young (Department of Plant Medicine, Sunchon National University)
Publication Information
Mycobiology / v.49, no.5, 2021 , pp. 491-497 More about this Journal
Abstract
An endolichenic fungus Xylaria grammica EL000614 produces grammicin, a potent nematicidal pyrone derivative that can serve as a new control option for root-knot nematodes. We optimized an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for X. grammica to support genetic studies. Transformants were successfully generated after co-cultivation of homogenized young mycelia of X. grammica with A. tumefaciens strain AGL-1 carrying a binary vector that contains the bacterial hygromycin B phosphotransferase (hph) gene and the eGFP gene in T-DNA. The resulting transformants were mitotically stable, and PCR analysis showed the integratin of both genes in the genome of transformants. Expression of eGFP was confirmed via fluorescence microscopy. Southern analysis showed that 131 (78.9%) out of 166 transformants contained a single T-DNA insertion. Crucial factors for producing predominantly single T-DNA transformants include 48 h of co-cultivation, pretreatment of A. tumefaciens cells with acetosyringone before co-cultivation, and using freshly prepared mycelia. The established ATMT protocol offers an efficient tool for random insertional mutagenesis and gene transfer in studying the biology and ecology of X. grammica.
Keywords
ATMT; fungal transformation; gene manipulation; Xylaria grammica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khang CH, Park SY, Lee YH, et al. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol. 2005;42(6):483-492.   DOI
2 Daboussi M, Djeballi A, Gerlinger C, et al. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet. 1989;15(6): 453-456.   DOI
3 Leung H, Lehtinen U, Karjalainen R, et al. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr Genet. 1990;17(5):409-411.   DOI
4 Bundock P, Hooykaas PJ. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA. 1996; 93(26):15272-15275.   DOI
5 Winans SC. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev. 1992;56(1):12-31.   DOI
6 De Groot MJ, Bundock P, Hooykaas PJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998; 16(9):839-842.   DOI
7 Mullins E, Romaine CP, Chen X, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology. 2001;91(2):173-180.   DOI
8 Punt PJ, van Biezen N, Conesa A, et al. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002;20(5): 200-206.   DOI
9 Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120(3):621-623.   DOI
10 Hansen G, Wright MS. Recent advances in the transformation of plants. Trends Plant Sci. 1999; 4(6):226-231.   DOI
11 Kim TY, Jang JY, Yu NH, et al. Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest Manag Sci. 2018;74(2):384-391.   DOI
12 Fournier J, Flessa F, Persoh D, et al. Three new Xylaria species from southwestern Europe. Mycol Progr. 2011;10(1):33-52.   DOI
13 Stadler M, Kuhnert E, Persoh D, et al. The xylariaceae as model example for a unified nomenclature following the "one Fungus-One name"(1F1N) concept. Mycology. 2013;4:5-21.
14 Edwards RL, Maitland DJ, Pittayakhajonwut P, et al. Metabolites of the higher fungi. Part 33. 1 grammicin, a novel bicyclic C7H6O4 furanopyranol from the fungus Xylaria grammica (mont.) Fr. J Chem Soc, Perkin Trans 1. 2001;11:1296-1299.
15 Morioka LRI, Furlaneto MC, Bogas AC, et al. Efficient genetic transformation system for the ochratoxigenic fungus Aspergillus carbonarius. Curr Microbiol. 2006;52(6):469-472.   DOI
16 Godio R, Fouces R, Gudina E, et al. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet. 2004;46(5): 287-294.   DOI
17 Michielse CB, Hooykaas PJ, van den Hondel CA, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005;48(1):1-17.   DOI
18 Frandsen RJ. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods. 2011;87(3): 247-262.   DOI
19 Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995;8(3):457-463.   DOI
20 Kirk P, Cannon P, Minter D, et al. Dictionary of the fungi. 10th ed. Wallingford (UK): CABI Publishing; 2008.
21 Song F, Wu SH, Zhai YZ, et al. Secondary metabolites from the genus Xylaria and their bioactivities. Chem Biodivers. 2014;11(5):673-694.   DOI
22 Scott P, Kennedy B, Van Walbeek W. Desoxypatulinic acid from a patulin-producing strain of Penicillium patulum. Experientia. 1972; 28(10):1252-1252.
23 Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92: 189-195.   DOI
24 Covert SF, Kapoor P, Lee M-h, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res. 2001; 105(3):259-264.   DOI
25 Park S-Y, Jeong M-H, Wang H-Y, et al. Agrobacterium tumefaciens-mediated transformation of the lichen fungus, Umbilicaria muehlenbergii. PLoS One. 2013;8(12):e83896.   DOI