Acknowledgement
This work was supported by the National Natural Science Foundation of China [32171792].
References
- Yang Y, He P, Li N. The antitumor potential of extract of the oak bracket medicinal mushroom Inonotus baumii in SMMC-7721 tumor cells. Evid Based Complement Alternat Med. 2019;2019:1242784.
- Cai CS, Ma JX, Han CR, et al. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci Rep. 2019;9(1):7418.
- Liu MM, Zeng P, Li XT, et al. Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii. Int J Biol Macromol. 2016;91:1199-1205. https://doi.org/10.1016/j.ijbiomac.2016.06.086
- Yang K, Zhang S, Ying YM, et al. Cultivated fruit body of Phellinus baumii: a potentially sustainable antidiabetic resource. ACS Omega. 2020;5(15):8596-8604. https://doi.org/10.1021/acsomega.9b04478
- Sun TT, Sun XY, Wang XT, et al. Construction of prokaryotic expression and overexpression vectors of squalene epoxidase gene from Sanghuangporus baumii. Chin Trad Herb Drugs. 2018;49:2632-2639.
- Li ZN, Li WJ, Wang JZ, et al. Defatted silkworm pupae hydrolysates as a nitrogen source to produce polysaccharides and flavonoids using Phellinus baumii. Biomass Conv. Bioref. 2021;11(2):527-537. https://doi.org/10.1007/s13399-020-00800-3
- Zhang DH, Jiang LX, Li N, et al. Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme a gene increases ganoderic acid production in Ganoderma lingzhi. J Agric Food Chem. 2017;65(23):4683-4690. https://doi.org/10.1021/acs.jafc.7b00629
- Lee CH, Hsu KH, Wang SY, et al. Cloning and characterization of the lanosterol 14alpha-demethylase gene from Antrodia cinnamomea. J Agric Food Chem. 2010;58(8):4800-4807. https://doi.org/10.1021/jf904257h
- Sun TT, Zou L, Zhang LF, et al. Methyl jasmonate induces triterpenoid biosynthesis in Inonotus baumii. Biotechnol. Biotechnol. Equip. 2017;31(2):312-317. https://doi.org/10.1080/13102818.2017.1284023
- Xu YN, Xia XX, Zhong JJ. Induction of ganoderic acid biosynthesis by Mn2+ in static liquid cultivation of Ganoderma lucidum. Biotechnol Bioeng. 2014;111(11):2358-2365. https://doi.org/10.1002/bit.25288
- Xu YN, Xia XX, Zhong JJ. Induced effect of Na+ on ganoderic acid biosynthesis in static liquid culture of Ganoderma lucidum via calcineurin signal transduction. Biotechnol Bioeng. 2013;110(7):1913-1923. https://doi.org/10.1002/bit.24852
- Lu JMY, Fan WL, Wang WF, et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc Natl Acad Sci USA. 2014;111(44):E4743-E4752. https://doi.org/10.1073/pnas.1417570111
- Zhou JS, Ji SL, Ren MF, et al. Enhanced accumulation of individual ganoderic acids in a submerged culture of Ganoderma lucidum by the overexpression of squalene synthase gene. Biochem. Eng. J. 2014;90:178-183. https://doi.org/10.1016/j.bej.2014.06.008
- Lin YL, Lee YR, Tsao NW, et al. Characterization of the 2,3-Oxidosqualene cyclase gene from Antrodia cinnamomea and enhancement of cytotoxic triterpenoid compound production. J Nat Prod. 2015;78(7):1556-1562. https://doi.org/10.1021/acs.jnatprod.5b00020
- Ajikumar PK, Xiao WH, Tyo KEJ, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science. 2010;330(6000):70-74. https://doi.org/10.1126/science.1191652
- Wu FL, Shi L, Yao J, et al. The cloning, characterization, and functional analysis of a gene encoding an isopentenyl diphosphate isomerase involved in triterpene biosynthesis in the lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher basidiomycetes). Int J Med Mushrooms. 2013;15(3):223-232. https://doi.org/10.1615/IntJMedMushr.v15.i3.10
- Zhang DH, Li N, Yu X, et al. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi. Phytochemistry. 2017;134:46-53. https://doi.org/10.1016/j.phytochem.2016.11.006
- Wang YH, Wang GQ, Yi XM, et al. Hepatoprotective and antioxidant effects of total triterpenoids from Poria cocos. EJMP. 2017;21(2):1-9. https://doi.org/10.9734/EJMP/2017/37908
- Wang JR, Li YY, Liu DN. Cloning and characterization of farnesyl diphosphate synthase gene involved in triterpenoids biosynthesis from Poria cocos. Int J Mol Sci. 2014;15(12):22188-22202. https://doi.org/10.3390/ijms151222188
- Wu XD, Xie JZ, Qiu L, et al. The anti-inflammatory and analgesic activities of the ethyl acetate extract of Viburnum taitoense Hayata. J Ethnopharmacol. 2021;269:113742.
- Yang CS, Li WC, Li C, et al. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry. 2018;155:83-92. https://doi.org/10.1016/j.phytochem.2018.07.009
- Wang XT, Wang SX, Xu XR, et al. Molecular cloning, characterization, and heterologous expression of an acetyl-CoA acetyl transferase gene from Sanghuangporus baumii. Protein Expr Purif. 2020;170:105592.
- Huang J, Wang K, Zuo S, et al. Unsaturated fatty acid promotes the production of triterpenoids in submerged fermentation of Sanghuangporus baumii. Food Biosci. 2020;37:100712.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCT method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
- Liu ZC, Sun TT, Wang SX, et al. Cloning, molecular properties and differential expression analysis of the isopentenyl diphosphate isomerase gene in Sanghuangporus baumii. Biotechnol Biotechnol Equip. 2020;34(1):623-630. https://doi.org/10.1080/13102818.2020.1792342
- Maamoun AA, El-Akkad RH, Farag MA. Mapping metabolome changes in Luffa aegyptiaca Mill fruits at different maturation stages via MS-based metabolomics and chemometrics. J Adv Res. 2021;29:179-189. https://doi.org/10.1016/j.jare.2019.10.009
- Lv H, Zhang Y, Shi J, et al. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Res Int. 2017;100(Pt 3):486-493. https://doi.org/10.1016/j.foodres.2016.10.024
- Vain P. Thirty years of plant transformation technology development. Plant Biotechnol J. 2007;5(2):221-229. https://doi.org/10.1111/j.1467-7652.2006.00225.x
- Chen X, Stone M, Schlagnhaufer C, et al. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol. 2000;66(10):4510-4513. https://doi.org/10.1128/AEM.66.10.4510-4513.2000
- Michielse CB, Hooykaas PJJ, Hondel C, et al. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc. 2008;3(10):1671-1678. https://doi.org/10.1038/nprot.2008.154
- Shi L, Fang X, Li MJ, et al. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol. 2012;28(1):283-291. https://doi.org/10.1007/s11274-011-0818-z
- Wang S, Chen H, Wang Y, et al. Effects of Agrobacterium tumefaciens strain types on the Agrobacterium-mediated transformation efficiency of filamentous fungus Mortierella alpina. Lett Appl Microbiol. 2020;70(5):388-393. https://doi.org/10.1111/lam.13286
- Shi L, Qin L, Xu YJ, et al. Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from Ganoderma lucidum. Mol Biol Rep. 2012;39(5):6149-6159. https://doi.org/10.1007/s11033-011-1431-9
- Liu RD, Kim WY, Paguirigan JA, et al. Establishment of Agrobacterium tumefaciens-mediated transformation of Cladonia macilenta, a model lichen-forming fungus. JOF. 2021;7(4):252.
- Liu N, Chen GQ, Ning GA, et al. Agrobacterium tumefaciens-mediated transformation: an efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae. Microbiol Res. 2016;182:40-48. https://doi.org/10.1016/j.micres.2015.09.008
- Cardoza RE, Vizca ino JA, Hermosa MR, et al. Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol. 2006;43(3):164-178. https://doi.org/10.1016/j.fgb.2005.11.002
- Sun J, Zhang YY, Liu H, et al. A novel cytoplasmic isopentenyl diphosphate isomerase gene from tomato (Solanum lycopersicum): cloning, expression, and color complementation. Plant Mol Biol Rep. 2010;28(3):473-480. https://doi.org/10.1007/s11105-009-0174-4
- Wang YC, Qiu CX, Zhang F, et al. Molecular cloning, expression profiling and functional analyses of a cDNA encoding isopentenyl diphosphate isomerase from Gossypium barbadense. Biosci Rep. 2009; 29(2):111-119. https://doi.org/10.1042/BSR20070052
- Miscioscia E, Shmalberg J, Scott KC. Measurement of 3-acetyl-11-keto-beta-boswellic acid and 11- keto-beta-boswellic acid in Boswellia serrata supplements administered to dogs. BMC Vet Res. 2019;15(1):1-7. https://doi.org/10.1186/s12917-018-1758-8
- Kim SH, Jung SH, Lee YJ, et al. Dammarenediol-II prevents VEGF-mediated microvascular permeability in diabetic mice. Phytother Res. 2015;29(12):1910-1916. https://doi.org/10.1002/ptr.5480
- Lu B, Liu L, Zhen X, et al. Anti tumor activity of triterpenoid rich extract from bamboo shavings Caulis bamfusae in Taeniam. Afr J Biotechnol. 2010;9:6430-6436.
- Supanimit T, Sasinun S, Chadarat A, et al. Pharmacokinetics of ganoderic acids a and f after oral administration of Ling Zhi preparation in healthy male volunteers. J. Evidence-Based Integr. Med. 2012;2012:780892.
- Jayaprakasha GK, Jadegoud Y, Nagana GGA, et al. Bioactive compounds from sour orange inhibit Colon cancer cell proliferation and induce cell cycle arrest. J Agric Food Chem. 2010;58(1):180-186. https://doi.org/10.1021/jf9027816
- Poulose SM, Harris ED, Patil BS. Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. J Nutr. 2005;135(4):870-877. https://doi.org/10.1093/jn/135.4.870
- Hajjaj H, Mace C, Roberts M, et al. Effect of 26-oxygenosterolsfrom Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Appl Environ Microbiol. 2005;71(7):3653-3658.
- Sawai S, Saito K. Triterpenoid biosynthesis and engineering in plants. Front Plant Sci. 2011;2:25.