Browse > Article
http://dx.doi.org/10.4014/jmb.1603.03038

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation  

Dong, Yuguo (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Zhang, Jian (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Xu, Rui (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Lv, Xinxin (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Wang, Lihua (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Sun, Aiyou (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Wei, Dongzhi (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.11, 2016 , pp. 1924-1932 More about this Journal
Abstract
Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.
Keywords
Agrobacterium tumefaciens; Penicillium brevicompactum; directional transformation; mycophenolic acid; HMG-CoA lyase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen X, Stone M, Schlagnhaufer C, Romaine CP. 2000. A fruiting body tissue method for efficient Agrobacteriummediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513.   DOI
2 Covert S, Kapoor P, Lee M, Briley A, Nairn C. 2001. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol. Res. 105: 259-264.   DOI
3 de-Groot M, Bundock P, Hooykaas P, Beijersbergen A. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842.   DOI
4 Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A. 2011. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol. Res. 166: 314-322.   DOI
5 Allison AC. 2000. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47: 63-83.   DOI
6 An G, Ebert PR, Mitra A, Ha SB. 1988. Binary vectors, pp. 1-19. In Gelvin SB, Schilperoort RA (eds.). Plant Molecular Biology Manual. Kluwer Academic Publishers, Great Britain.
7 Dong YG, Xu R, Wang LH, Zhang J, Bai CG, Sun AY, Wei DZ. 2015. A combined feeding strategy for enhancing mycophenolic acid production by fed-batch fermentation in Penicillium brevicompactum. Process. Biochem. 50: 336-340.   DOI
8 Eugui EM, Allison AC. 1993. Immunosuppressive activity of mycophenolate mofetil. Ann. N.Y. Acad. Sci. 685: 309-329.   DOI
9 Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y. 2004. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J. Invertebr. Pathol. 85: 18-24.   DOI
10 Hooykaas PJJ, Roobol C, Schilperoort RA. 1979. Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110: 99-109.   DOI
11 Ji LH, Jiang Z D, Liu YB, Koh CMJ, Zhang LH. 2010. A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet. Biol. 47: 279-287.   DOI
12 Krysan PJ, Young JC, Sussman MR. 1999. T-DNA a s an insertional mutagen in Arabidopsis. Plant Cell 11: 2283-2290.   DOI
13 Li M, Gong X, Zheng J, Jiang D, Fu Y, Hou M. 2005. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiol. Lett. 243: 323-329.   DOI
14 Zeng F, Qin HQ, Xu WJ, Zheng MD, Hu HT, Shui H. 2016. Mycophenolic acid inhibits the phosphorylation of nuclear factor-kappaB and Akt in renal tubular epithelial cells. Mol. Med. Rep. 13: 560-564.   DOI
15 Wu JC. 1994. Mycophenolate mofetil: molecular mechanisms of action. Perspect. Drug Discov. Des. 2: 185-204.   DOI
16 Xu ZN, Yang ST. 2007. Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrousbed bioreactor. Enzyme Microb. Technol. 40: 623-628.   DOI
17 Yang YJ, Lee I . 2008. Agrobactrium tumefaciens-mediated transformation of Monascus ruber. J. Microbiol. Biotechnol. 18: 754-758.
18 Tinland B. 1996. The integration of T-DNA in plant genomes. Trends Plant Sci. 1: 178-184.   DOI
19 Vin okurova NG, Ivanushkina NE, Kochkina GA, Arinbasarov MU, Ozerskaya SM. 2005. Production of mycophenolic acid by fungi of the genus Penicillium link. Appl. Biochem. Microbiol. 41: 83-86.   DOI
20 Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. 1992. RS-61443 - a phase I clinical trial and pilot rescue study. Transplantation 53: 428-432.   DOI
21 Sullivan TD, Rooney PJ, Klein BS. 2002. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot. Cell 1: 895-905.   DOI
22 Liu YG, Mitsukawa N, Oosumi T, Whittier RF. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463.   DOI
23 Lu szczynska P, Pawinski T. 2015. Therapeutic drug monitoring of mycophenolic acid in lupus nephritis: a review of current literature. Ther. Drug Monit. 37: 711-717.   DOI
24 Meza-Avina ME, Ordonez M, Fernandez-Zertuche M, Rodriguez-Fragoso L, Reyes-Esparza J, de Los Rios-Corsino AA. 2005. Synthesis of some monocyclic analogues of mycophenolic acid via the Johnson ortho ester Claisen rearrangement. Bioorg. Med. Chem. 13: 6521-6528.   DOI
25 Maruthachalam K, Nair V, Rho HS, Choi J, Kim S, Lee YH. 2008. Agrobacterium tumefaciens-mediated transformation in Colletotrichum falcatum and C. acutatum. J. Microbiol. Biotechnol. 18: 234-241.
26 Mc Cormac AC, Elliott MC, Chen DF. 1998. A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol. Biotechnol. 9: 155-159.   DOI
27 Liu M, Zhang P, Cui XL, Ren X, Zhang H. 2006. Studies on the breeding by ion implantation and cultivation of mycophenolic acid producing strain. Acta Microbiol. Sin. 46: 816-819.
28 Michielse CB, Hooykaas PJ, Hondel CA, Ram AF. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1-17.   DOI
29 Muth WL, Nash CH. 1975. Biosynthesis of mycophenolic acid: purification and characterization of S-adenosyl-Lmethionine: demethylmycophenolic acid O-methyltransferase. Antimicrob. Agents Chemother. 8: 321-327.   DOI
30 Marquardt PT, Muller-Hermelink HK. 1990. Characteristics of T-lymphocytes infiltrating human B-cell lymphomas. Environ. Health Perspect. 88: 233-235.   DOI
31 Ozaki H, Ishihara M, Kida T, Yamanaka S, Shibai H. 1987. Mycophenolic acid production by drug-resistant and methionine or glutamic-acid requiring mutants of Penicillium brevicompactum. Agric. Biol. Chem. 51: 2509-2514.
32 Rainiene T. 2005. Immunosuppression in the past and today. Acta Med. 12: 10-17.
33 Peng Y, Dong Y, Mahato RI. 2015. Synthesis and characterization of a novel mycophenolic acid-quinic acid conjugate serving as immunosuppressant with decreased toxicity. Mol. Pharm. 12: 4445-4453.   DOI
34 Piers KL, Heath JD, Liang X, Stephens KM, Nester EW. 1996. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 93: 1613-1618.   DOI
35 Qin XT, Xu YF, Cheng ZB. 2005. Studies on mutagenesis and fermentation of mycophenolic acid producing strain. Chin. J. Antibiot. 30: 426-427.
36 Sambrock J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
37 Sanchez O, Navarro RE, Aguirre J. 1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol. Gen. Genet. 258: 89-94.   DOI
38 Ando K, Suzuki S, Tamura G, Arima K. 1968. Antiviral activity of mycophenolic acid. Studies on antiviral and antitumor antibiotics. J. Antibiot. 21: 649-652.   DOI
39 Bedford CT, Knittel P, Money T, Phillips GT, Salisberg P. 1973. Biosynthesis of mycophenolic acid. Can. J. Chem. 51: 694-697.
40 Bentley R. 2000. Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 100: 3801-3826.   DOI
41 Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206-3214.