Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.1.008

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae  

Kwon, Min-Jung (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University)
Kim, Kyoung-Su (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University)
Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University)
Publication Information
The Plant Pathology Journal / v.26, no.1, 2010 , pp. 8-16 More about this Journal
Abstract
The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.
Keywords
appressorium; conidiation; rice blast; short-chain dehydrogenase/reductase (SDR);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Butchko, R. A. E., Plattner, R. D. and Proctor, R. H. 2003. FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J. Agric. Food Chem. 51:3000-3006.   DOI   ScienceOn
2 Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H. C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T. and Sheen, J. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723-2743.   DOI
3 Chi, M. H., Park, S. Y., Kim, S. and Lee, Y. H. 2009a. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   DOI   ScienceOn
4 Chi, M. H., Park, S. Y., Kim, S. and Lee, Y. H. 2009b. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5:e1000401.   DOI   ScienceOn
5 Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y. H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254.   DOI   ScienceOn
6 Choi, J., Park, J., Jeon, J., Chi, M. H., Goh, J., Yoo, S. Y., Jung, K., Kim, H., Park, S. Y., Rho, H. S., Kim, S., Kim, B. R., Han, S. S., Kang, S. and Lee, Y. H. 2007. Genome-wide analysis of TDNA integration into the chromosomes of Magnaporthe oryzae. Mol. Microbiol. 66:371-382.   DOI   ScienceOn
7 Choi, J. H., Kim, Y. and Lee, Y. H. 2009. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J. Microbiol. Biotechnol. 19:11-16.
8 Xu, J. R., Urban, M., Sweigard, J. A. and Hamer, J. E. 1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol. Plant-Microbe Interact. 10:187-194.   DOI   ScienceOn
9 Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981.
10 Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, USA.
11 Thompson, J. E., Basarab, G. S., Andersson, A., Lindqvist, Y. and Jordan, D. B. 1997. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism. Biochemistry 36: 1852-1860.   DOI   ScienceOn
12 Villarroya, A., Juan, E., Egestad, B. and Jornvall, H. 1989. The primary structure of alcohol dehydrogenase from Drosophila lebanonensis. Extensive variation within insect ‘short-chain’ alcohol dehydrogenase lacking zinc. Eur. J. Biochem. 180:191-197.   DOI   ScienceOn
13 Thompson, J. E., Fahnestock, S., Farrall, L., Liao, D. I., Valent, B. and Jordan, D. B. 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. J. Biol. Chem. 275:34867-34872.   DOI   ScienceOn
14 Tokousbalides, M. C. and Sisler, H. D. 1978. Effect of tricyclazole on growth and secondary metabolism in Pyricularia oryzae. Pestic. Biochem. Physiol. 8:26-32.   DOI
15 Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology 80:33-36.   DOI
16 Woloshuk, C. P., Sisler, H. D., Tokousbalides, M. C. and Dutky, S. R. 1980. Melanin biosynthesis in Pyricularia oryzae: site of tricyclazole inhibition and pathogenicity of melanin-deficient mutants. Pest Biochem. Physiol. 14:256-264.   DOI
17 Woloshuk, C. P. and Sisler, H. D. 1982. Tricyclazole, pyroquilon, trachlorophthalide, PCBA, coumarin and related compounds inhibit melanization and epidermal penetration by Pyricularia oryzae. J. Pestic. Sci. 7:161-166.   DOI
18 Xu, J. R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696-2706.   DOI   ScienceOn
19 Lee, Y. H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant-pathogenic fungus Magnaporthe grisea. Plant Cell 5:693-700.   DOI   ScienceOn
20 Liu, Y. G. and Whittier, R. F. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674-681.   DOI   ScienceOn
21 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta}^{{\Delta}Ct}$ method. Methods 25:402-408.   DOI   ScienceOn
22 Millard, P. J., Roth, B. L., Thi, H. P., Yue, S. T. and Haugland, R. P. 1997. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63:2897-2905.
23 Mitchell, T. K. and Dean, R. A. 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869-1878.   DOI   ScienceOn
24 Oppermann, U. C., Filling, C. and Jörnvall, H. 2001. Forms and functions of human SDR enzymes. Chem. Biol. Interact. 130-132:699-705.   DOI   ScienceOn
25 Ou, S. H. 1985. Rice diseases. Surrey: Commonwealth Mycological Institute. pp. 97-184.
26 Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., Duarte, R. G., Jornvall, H., Kavanagh, K. L., Kedishvili, N., Kisiela, M., Maser, E., Mindnich, R., Orchard, S., Penning, T. M., Thornton, J. M., Adamski, J. and Oppermann, U. 2009. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact. 178:94-98.   DOI   ScienceOn
27 Rossmann, M. G. and Argos, P. 1978. The taxonomy of binding sites in proteins. Mol. Cell Biochem. 21:161-182.
28 Kallberg, Y., Oppermann, U., Jornvall, H. and Persson, B. 2002. Short-chain dehydrogenases/reductases (SDRs). Eur. J. Biochem. 269:4409-4417.   DOI   ScienceOn
29 Jeon, J., Goh, J., Yoo, S., Chi, M. H., Choi, J., Rho, H. S., Park, J., Han, S. S., Kim, B. R., Park, S. Y., Kim, S. and Lee, Y. H. 2008. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant-Microbe Interact. 21: 525-534.   DOI   ScienceOn
30 Jeon, J., Park, S. Y., Chi, M. H., Choi, J., Park, J., Rho, H. S., Kim, S., Goh, J., Yoo, S., Park, J. Y., Yi, M., Yang, S., Kwon, M. J., Han, S. S., Kim, B. R., Khang, C. H., Park, B., Lim, S. E., Jung, K., Kong, S., Karunakaran, M., Oh, H. S., Kim, H., Kang, S., Choi, W. B. and Lee, Y. H. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39:561-565.   DOI   ScienceOn
31 Kallberg, Y. and Persson, B. 2006. Prediction of coenzyme specificity in dehydrogenases/reductases: a hidden Markov modelbased method and its application on complete genomes. FEBS J. 273:1177-1184.   DOI   ScienceOn
32 Kim, S., Ahn, I. P., Rho, H. S. and Lee, Y. H. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57:1224-1237.   DOI   ScienceOn
33 Koga, H., Dohi, K., Nakayachi, O. and Mori, M. 2004. A novel inoculation method of Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants. Physiol. Mol. Plant Pathol. 64:67-72.   DOI   ScienceOn
34 Koh, Y. J. 1986. Adult-plant resistance of rice cultivars to blast. Ph.D. thesis. Seoul National University, Suwon, Korea.
35 Lee, S. C. and Lee, Y. H. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8:698-704.
36 DeLong, A., Calderon-Urrea, A. and Dellaporta, S. L. 1993. Sex determination gene TASSELSEED2 of maize encodes a shortchain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757-768.   DOI   ScienceOn
37 Choi, W. and Dean, R. A. 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973-1983.   DOI   ScienceOn
38 Chumley, F. G. and Valent, B. 1990. Genetic analysis of melanindeficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 3:135-143.   DOI
39 Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H. Q., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W. X., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986.   DOI   ScienceOn
40 Gritz, L. and Davies, J. 1983. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179-188.   DOI   ScienceOn
41 Howard, R. J., Ferrari, M. A., Roach, D. H. and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U S A 88:11281-11284.   DOI   ScienceOn
42 Jornvall, H., Hoog, J. O. and Persson, B. 1999. SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett. 445:261-264.   DOI   ScienceOn
43 Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. and Ghosh, D. 1995. Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003-6013.   DOI   ScienceOn