Browse > Article

Agrobacterium tumefaciens-mediated Transformation in Colletotrichum falcatum and C. acutatum  

Maruthachalam, Karunakaran (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University)
Nair, Vijayan (Biotechnology Laboratory, Sugarcane Breeding Institute)
Rho, Hee-Sool (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University)
Choi, Jae-Hyuk (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University)
Kim, Soon-Ok (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University)
Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Center for Fungal Genetic Resources, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 234-241 More about this Journal
Abstract
Agrobacterum tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with co-cultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.
Keywords
C. falcatum; C. acutatum; insertional mutagenesis; pepper anthracnose; sugarcane red rot; transformation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Bundock, P., A. Dendulkras, A. Beijersbergen, and P. J. J. Hooykaas. 1995. Transkingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206-3214
2 Bundock, P., K. Mroczek, A. A. Winkler, H.Y. Steensma, and P. J. J. Hooykaas. 1999. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261: 115-121   DOI   ScienceOn
3 Chen, X., M. Stone, C. Schlagnhaufer, and C. P. Romaine. 2000. A fruiting body tissue method for efficient Agrobacteriummediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513   DOI   ScienceOn
4 Cho, J. Y., G. J. Choi, S. W. Lee, K. S. Jang, H. K. Lim, C. H. Lim, S. O. Lee, K. Y. Cho, and J. C. Kim. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16: 280-285   과학기술학회마을
5 Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35: 211-234   DOI   ScienceOn
6 Hooykaas, P. J. J., C. Roobol, and R. A. Schilperoort. 1979. Regulation of the transfer of Ti plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110: 99-109   DOI
7 Khang, C. H., S. Y. Park, Y. H. Lee, and S. C. Kang. 2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet. Biol. 42: 483-492   DOI   ScienceOn
8 Kunik, T., T. Tzfira, Y. Kapulnik, Y. Gafni, C. Dingwall, and V. Citovsky. 2001. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98: 1871-1876
9 Liu, Y. G., N. Mitsukawa, T. Oosumi, and R. F. Whittier. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463   DOI   ScienceOn
10 Mullins, E. D., X. Chen, P. Romaine, R. Raina, D. M. Geiser, and S. Kang. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91: 173-180   DOI   ScienceOn
11 O'Connell, R., C. Herbert, S. Sreenivasaprasad, M. Khatib, M. T. Esquerre-Tugaye, and B. Dumas. 2004. A novel Arabidopsis- Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol. Plant-Microbe Interact. 17: 272-282   DOI   ScienceOn
12 Sweigard, J. A., A. M. Carroll, L. Farrall, F. G. Chumley, and B. Valent. 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact. 11: 404-412   DOI   ScienceOn
13 Xu, W., C. Zhu, and B. Zhu. 2005. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J. Microbiol. Biotechnol. 15: 683-688   과학기술학회마을
14 Tanaka, A., H. Shiotani, M. Yamamoto, and T. Tsuge. 1999. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interact. 12: 691-702   DOI   ScienceOn
15 Tsuji, G., N. Fujihara, C. Hirose, S. Tsuge, T. Shiraishi, and Y. Kubo. 2003. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J. Gen. Plant Pathol. 69: 230-239
16 Alexander, K. 1992. Current status of red rot disease of sugarcane in Tamil Nadu. South Indian Sugarcane Sugarcane Technol. Assoc. 61-65
17 Fox, D. S., G. M. Cox, and J. Heitman. 2003. Phospholipidbinding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot. Cell 2: 1025-1035   DOI   ScienceOn
18 Nierman, W. C., A. Pain, M. J. Anderson, J. R. Wortman, H. S. Kim, J. Arroyo, M. Berriman, K. Abe, D. B. Archer, et al. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151-1156   DOI   ScienceOn
19 Flowers, J. L. and L. J. Vaillancourt. 2005. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola. Curr. Genet. 48: 380-388   DOI   ScienceOn
20 Takahara, H., G. Tsuji, Y. Kubo, M. Yamamoto, K. Toyoda, Y. Inagaki, Y. Ichinose, and T. Shiraishi. 2004. Agrobacterium tumefaciens-mediated transformation as tool for random mutagenesis of Colletotrichum trifolii. J. Gen. Plant Pathol. 70: 93-96   DOI   ScienceOn
21 Jeon, J., S.-Y. Park, M.-H. Chi, J. Choi, J. Park, H.-S. Rho, S. Kim, J. Goh, S. Yoo, et al. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39: 561-565   DOI   ScienceOn
22 Meyer, V., D. Mueller, T. Strowig, and U. Stahl. 2003. Comparison of different transformation methods for Aspergillus giganteus. Curr. Genet. 43: 371-377   DOI   ScienceOn
23 Balhadere, P. V., A. J. Foster, and N. J. Talbot. 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. Plant-Microbe Interact. 12: 129-142   DOI   ScienceOn
24 Perfect, S. E., H. B. Hughes, R. J. O'Connell, and J. R. Green. 1999. Colletotrichum - A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27: 186-198   DOI   ScienceOn
25 Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 223-256   DOI   ScienceOn
26 Carroll, A., J. A. Sweigard, and B. Valent. 1994. Improved vectors for selecting resistance to hygromycin. Fungal Genet. Newslett. 41: 22
27 Lee, S. H., H. Y. Kim, S. Y. Hong, Y. W. Lee, and S. H. Yun. 2006. A large genomic deletion in Gibberella zeae causes a defect in the production of two polyketides but not in sexual development or virulence. Plant Pathol. J. 22: 215-221   과학기술학회마을   DOI
28 Abuodeh, R. O., M. J. Orbach, M. A. Mandel, A. Das, and J. N. Galgiani. 2000. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis. 181: 2106-2110   DOI   ScienceOn
29 Robinson, M. and A. Sharon. 1999. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia. Curr. Genet. 36: 98-104   DOI   ScienceOn
30 Horowitz, S., S. Freeman, and A. Sharon. 2002. Use of green fluorescent protein-transgenic strains to study pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum. Phytopathology 92: 743-749   DOI   ScienceOn
31 Redman, R. S., J. C. Ranson, and R. J. Rodriguez. 1999. Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol. Plant-Microbe Interact. 12: 969-975   DOI
32 Rho, H. S., S. Kang, and Y. H. Lee. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12: 407-411
33 Thon, M. R., E. M. Nuckles, and L. J. Vaillancourt. 2000. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol. Plant Microbe Interact. 13: 1356-1365   DOI   ScienceOn
34 Michielse, C. B., P. J. J. Hooykaas, C. A. M. J. J. van den Hondel, and A. F. J. Ram. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1-17   DOI   ScienceOn
35 Park, J., H. Kim, S. Kim, S. Kong, J. Park, S. Kim, H.-Y. Han, B. Park, K. Jung, and Y.-H. Lee. 2006. A comparative genomewide analysis of GATA transcription factors in fungi. Genomics & Informatics 4: 156-169   과학기술학회마을
36 de Groot, M. J. A., P. Bundock, P. J. J. Hooykaas, and A. G. M. Beijersbergen. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842   DOI   ScienceOn
37 Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
38 Chung, K. R., T. Shilts, W. Li, and L. W. Timmer. 2002. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 213: 33-39   DOI   ScienceOn