Communications for Statistical Applications and Methods
/
제20권1호
/
pp.41-52
/
2013
The stationary bootstrap of Politis and Romano (1994) is adopted to develop prediction intervals of returns and volatilities in a generalized autoregressive heteroskedastic (GARCH)(p, q) model. The stationary bootstrap method is applied to generate bootstrap observations of squared returns and residuals, through an ARMA representation of the GARCH model. The stationary bootstrap estimators of unknown parameters are defined and used to calculate the stationary bootstrap samples of volatilities. Estimates of future values of returns and volatilities in the GARCH process and the bootstrap prediction intervals are constructed based on the stationary bootstrap; in addition, asymptotic validities are also shown.
In this paper, design procedure and estimation of the double sampling plans are developed when the production process is examined in order and if it shows the dependence between the products. If a dependent process model can be simulated, the best sampling plans can be selected by using the special properties of the probability structure. The number of actual evaluations to find the plans can be reduced remarkably. The experimental study reveals that only small portion of the total exhaustive enumeration is needed. ARMA (1,1) time series models are given as numerical examples.
Communications for Statistical Applications and Methods
/
제25권1호
/
pp.61-70
/
2018
Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.
본 논문에서는 DMT(discrete multitone)방식의 $\chi$DSL(digital subscriber line)시스템에 사용되는 시간영역 등화기 설계를 위한 새로운 알고리듬을 제안한다. 제안된 알고리듬은 DMT 시스템의 등화기 설계기 사용되는 ARMA(autoregressive moving average) 모델에서 DMT시스템의 성능에 영향을 주지 않는 항을 삭제 시킴으로써 최소의 계산량을 갖는다. 제안된 방식은 matrix inverse 방식, fast algorithm방식, iterative 방식, inverse power 방식과 같은 기존의 시간영역 등화 알고리듬들과 비교할 때 매우 적은 계산량을 사용하나, 성능면에서는 기존의 방식과 비슷하거나 우수한 결과를 보인다. 또한 제안된 방식에서는 수신된 신호만 사용하므로 채널의 임펄스 응답을 추정하거나 훈련신호를 사용할 필요가 없다는 장점이 있다. 또한 bridged tap 유무에 대한 정보를 이용하였다. 즉, bridged tap이 포함되지 않는 채널의 경우 시간영역 등화기 계수의 개수를 반으로 줄일 수 있음을 보인다. ADSL(asymmertrical digital subscriber line)서비스 환경에서 제안된 시간영역 등화기 알고리듬과 기존 시간영역 등화기 알고리듬의 성능을 비교한다.
본 연구에서는 오존 예측 시스템의 개발에 있어서 쌍일차 모델의 성능 및 효용성을 확인하기 위하여 쌍일차 모델 및 선형 모델을 이용한 오존 형성의 모델인식 모사실험을 하였으며 또한 쌍일차 모델을 이용한 오존 형성의 예측결과를 서울시의 측정자료 및 선형모델의 예측결과와 비교하였다. 모델인식에 있어서는 ARMA 모델을 사용하였으며 모델의 파라미터를 평가하기 위하여 방정식 오차법에 근거한 연속 파라미터 평가 알고리즘을 적용하였다. 모델인식 실험결과로부터 쌍일차 모델을 이용한 오존 형성량과 모사기로부터 얻은 오존 형성량이 거의 일치함을 알 수 있었으며 또한 예측결과와 서울시 측정자료와의 비교로부터 오존예보시스템을 위한 실시간 및 단시간 오존 형성량의 예측방법 개발에 있어서 본 연구에서 제안한 방법의 타당성을 확인할 수 있었다.
수문시계열 분석과 예측은 대부분 ARMA(AutoRegressive Moving Average) 형태의 선형적인 추계학적인 모형을 이용하였으나 자현현상이 복잡해지고 비선형적인 특성을 가짐에 따라 선형적인 해석은 수문시계열의 분석과 예측에 있어서 많은 오류를 내포하고 있다. 이와 같은 문제를 해결하기 위한 시도로 Chaos이론이란 개념이 사용되기 시작하였으며, 수자원분야에서는 1980년대 후반부터 물수지 방정식 및 강우유출에 대한 카오스적 특성분석 등 많은 연구가 진행되었다. 본 연구에서는 영산강유역의 본류를 대표하는 나주지점을 대상으로 2003년 1월 1일 00시부터 2004년 12월 31일 23시까지 17,544개의 시수위 자료에 대하여 해당 년도의 Rating-Curve식을 적용 환산한 유출량자료에 데한 카오스적 특성을 분석하였다. 카오스적 특성을 분석하기에 앞서 원자료에 대하여 이동평균법과 Savitzky-Golay Filter를 적용하여 잡음을 제거하였으며, 1차원의 단일변량의 자료에 대한 상태공간(Phase Space)의 재건을 통하여 비교검토 하였다. 이러한 일련의 과정을 거친 자료에 대하여 상관차원법을 이용하여 영산강 유역의 나주지점의 시유출량 자료에 대한 카오스적 특성을 분석한 결과 저차원의 수렴으로 카오스 특성을 가졌다.
SAMINENI, Ravi Kumar;PUPPALA, Raja Babu;MUTHANGI, Ramesh;KULAPATHI, Syamsundar
The Journal of Asian Finance, Economics and Business
/
제7권11호
/
pp.95-100
/
2020
Nifty Bank Index has started trading in futures and options (F&O) segment from 13th June 2005 in National Stock Exchange. The purpose of the study is to enhance the literature by examining expiration effect on the price volatility and price reversal of Underlying Index in India. Historical data used for the current study primarily comprise of daily close prices of Nifty Bank which is the only equity sectoral index in India which is traded in derivatives market and its Future contract value is derived from the underlying CNX Bank Index during the period 1st January 2010 till 31st March 2020. To check stationarity of the data, Augmented Dicky Fuller test was used. The study employed ARMA- EGARCH model for analysing the data. The empirical results revealed that there is no effect on the mean returns of underlying Index and EGARCH (1,1) model furthermore shows there is existence of leverage effect in the Bank Index i.e., negative shocks causes more fluctuations in the Index than positive news of similar magnitude. The outcome of the study specifies that there is no effect on volatility on the underlying sectoral index due to expiration days and also observed no price reversal effect once the expiration days are over.
This study analyzed the impact of Higher-order resources on profit sustainability for domestic companies using a mathematical statistical model. Higher-order resources refer to resources that do not directly affect profits but influence other resources that directly contribute to profits. As a result of analysis using 30 years of actual data from more than 650 domestic companies, the average duration of competitive advantage including high-order resources was found to be about twice as long as the period suggested by the autoregressive model excluding high-order resources. Through this, if companies want to earn more profits over a long period of time than their competitors, they must not only possess resources that are more valuable, rare, difficult to imitate, and non-substitutable compared to their competitors, but also that higher-order resources can contribute to changes in these resources over time. It was confirmed that it must lead the long-term profit difference. High-level resources include strategic planning, mergers and acquisitions (M&A) capabilities, and good forecasting.
Analyzing autocorrelated data set is still an open problem. Developing on easy and efficient method for severe positive correlated data set, which is common in simulation output, is vital for the simulation society. Bootstrap is on easy and powerful tool for constructing non-parametric inferential procedures in modern statistical data analysis. Conventional bootstrap algorithm requires iid assumption in the original data set. Proper choice of resampling units for generating replicates has much to do with the structure of the original data set, iid data or autocorrelated. In this paper, a new bootstrap resampling scheme is proposed to analyze the autocorrelated data set : the Threshold Bootstrap. A thorough literature search of bootstrap method focusing on the case of autocorrelated data set is also provided. Theoretical foundations of Threshold Bootstrap is studied and compared with other leading bootstrap sampling techniques for autocorrelated data sets. The performance of TB is reported using M/M/1 queueing model, else the comparison of other resampling techniques of ARMA data set is also reported.
본 논문은 우리나라의 주가지수수익률의 변동특성이 카오스를 내재하고 있는지 아니면 랜덤과정을 따르는지를 분석하기 위하여 Hurst의 R/S분석을 중심으로 분석하였다. 우리나라 증권시장의 1980년 1월 5일부터 1996년 말까지 총 4,982일 동안의 일별종합주가지수를 대수수익률로 전환한 시계열자료로 R/S분석한 결과 안정성과 주기유무를 판별하는 V-통계량 그래프에 의하면 83일과 33일의 비주기적 순환을 나타내고 있음을 알 수 있었다. 이러한 분석결과는 가우시안 랜덤과정과 그다지 큰 차이가 나지 않음을 알 수 있었다. 또한 선형성을 제거한 ARMA잔차와 비선형성을 제거한 GARCHM잔차자료에 대한 R/S분석한 결과도 원래 시계열보다 더 가우시안 랜덤과정에 더 근접함을 알 수 있었다. 한편 총 10개의 대리자료를 만들어서 평균을 취한 값으로 분석한 결과도 마찬가지로 나타나고 있다. 일별주가지수수익률에 내재하는 선형성분을 ARMA과정에 의정에 제거하고 남은 잔차중에는 비선형성분이 여전히 잔존하는데 그것이 일부 GARCHM과정에 의해서 미미하고 가우시안 랜덤과정이 보다 크게 나타남을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.