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Design and Estimation of Double Sampling Plans for the Dependent
Production Processes

A7
Won Kyung Kim*

Abstract

in this paper, design procedure and estimation of the double sampiing plans
are developed when the production process is examined in order and if it
shows the dependence between the products. If a dependent process model
can be simulated, the best sampling plans can be selected by using the special
properties of the probability structure. The number of actual evaluations to
find the plans can be reduced remarkably. The experimental study reveals
that only small portion of the total exhausfive enumeration is needed. ARMA
(1,1) time series models are given as numerical examples.

1. Introduction

In standard acceptance sampling plans, sta-
tistical sampling procedures are based on
independent and identically distributed random
variables, In practical use, it may be difficult
to attain a state of statistical control with this
strict sense; dependence or correlation between

items and other systematic time related effects
are sometimes substantial.

Broadbent[4] observed a mode! in which the
output of a process produced good and bad
items. He investigated a production process
where a mold was continuously producing glass
products(TV tube) in an automatic manufactur-
ing scheme. He found that Markovian depen-
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dence was introduced by the fact that a defect
was likely to occur in a soccession of items
from a single mold until the mold was
renewed. The dependence was unavoidable
because of the gradual quality degradation of
the meld. The items produced from the next
shaping process was necessarily affected by the
items produced from the molding process.
Johnson and Bagshaw[9] studied the effects of
serial correlation in a continuous sheet-like
process on the performance of a one-sided
cusum test proposed by Page[13]. The process
was desired to control the weight at 1.25 per
unit area. But the deviations from the target
were identified as a time series AR(1) model
with $=0.65. Due to this serial correlation,
not only the average run length was increased
but, more importantly, the run length distribu-
tion itself was changed. Cox[6] studied an
acceptance sampling situation in which the
proportion of defective items in the baiches
formed two state Markov chain with known
transition probabilities. Campling[5] investigat-
ec. serial sampling acceptance schemes for large
batches of items when the fraction of defective
ratio parameter formed continuous state Mar-
kov process, and the number of defective items
followed a normal distribution. Preston[16]
studied an empirical Bayes estimation problem
for the application of a single acceptance
sampling in which the set of parameter values
was a realization of a stationary Markov chain,
Kumar[10] has developed a tightened m-level
centinuowns sampling plan that was an extension

of MLP-T plans for s independence developed
by Derman, Littaver, and Solomon[7] to the
Markov-dependent production processes. Sarka-
di and Vincze[18] analyzed a single sampling
plan on a Polya sequence model. Alwan and
Roberis[1] used two basic charts called com-
mon-cause chart and Special-cause chart when
the data shows lack of statistical control. As
another effort to avoid the dependence, Skip
lot plans(Perry[14]} have been usually used if
there are patterned vamations of dependent
incoming lot quality. An example of this would
be successive lots of product coming from a
process that exhibits deterioration over time
due to such factors as tool wear. In such
situations, sampling inspections are concentrai-
ing on the portion of the incoming lots
exhibiting the poorest quality. Bhat, Lal and
Karunaratne[3} approached the single accep-
tance sampling problem with an augmented
Markov chain matrix. Nelson[11] has de-
veloped a method for estimating single accep-
tance sampling plans for general production

process models using simulation.

An Example of Inspection Problems in
Dependent Production Process

Until recently, in many companies there has
been little attempt to control the quality of a
product at each stage of production, nor has
there been attempt to determine what factors
influence product quality. The quality of an
item has been determined by the time it reaches
the final inspection stage. Thus 100% final
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inspection, as has been routinely practiced in
many companies both large and small, will not
ensure good quality. Studies have shown that
only about 80% of nonconforming units are
detected during 100% final inspection (Ryan
[17]). It has been reported that in many cases
100% inspection tasks are not error free, but
on the contrary may even be error prone due
to the inspection error{Shin and Lingayat[20]).
It is desirable to collect sample data at every
stage of a production process and analyze those
data. Here statistical methods such as control
charts or acceptance samplings are used at each
stage of production to inspect the quality, and
other statistical techniques are used during the
praduction. In a series of production facilities,
praduct quality of the previous production stage
necessarily affects the quality of the next
production stage. Suppose, for example, a new
tool will be used at the beginning of process
and during the production progressive tool wear
will take place. The probability of producing
a defective item will vary as items are
produced. Assume that {Y,i=1,2,-, N} are
th: measurements of a production process. If
the process measurements follow ARMA(L,1)

process, the series is represented as
YI:: e+ ¢(Y§_|'#)+ 9 £ i-1+ Er, fUF |. = 1, 2, Ty N,

where # is the mean of the process, and
{¢,i=1,2,, N} follows N(O,o3, | ¢|=<1,
and | 6 | 1. The process measurement Y;

also follows a normal distribution N{x, o3},

where ¢3= 1+ 6%42¢ 6)/(1-97).

The two parameters ¢ and ¢ characterize
the process values. If $=6=0, the process
corresponds to the independent process. If the
ith ftem is within tolerance limits, that is /<
¥,=u, the item is accepted, otherwise the item
is rejected. The degradation in quality can be
due to a shift in the .process mean er increase
of process variance. The fraction of defectives
p, is dependent on # and ¢}. For examples,
two ARMA(1,1) models with the following
process specifications have been considered by
Nelson[11].

increasing shifted 3
variance mean
Quality AQL LTPD | AQL LTPD
M 10 10 10 11.2940
ey 0.03778 0.09240 1 1

lower limit | 95 95 |7.4242 7.4242
upper limit | 105 105 |12.5758 12.5758
p 00t 010 | 001  0.10

Figure I is an example graph of the
increasing variance case showing typical reali-
zations of the process value Y. In the
increasing variance case, the mean # is fixed
and the degradation in quality is due to an
increase of process variance ¢%. In the shifted
mean case, variance ¢y is fixed and a shift
of the mean v degrades the quality. With the
acceptable tool wear the producer’s risk is «
at the prespecified AQL, and with more rapid

tool wear the consumer’s risk is £ at the
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Figure 1. A typical realization of ARMA(1,1) process value Y;

specified LTPD. Suppose products of lot size
N are inspected sequentially as they are
produced. When dependent items are produced
due to such as tool wear, the process is stopped
and rearranged. Here, acceptance sampling
plans are used for determining the process
stopping or rejection of the lot. However, we
can not use conventional sampling plans since
it is based on independent observations. The
purpose of this paper is the discussion of the
design procedure for the double sampling plans
in such dependent production processes.

At the next section, we will find rejection
probabilities of a lot to design sampling plans.
The design procedure of double sampling plans
and search schemes will be discussed in section
3 and 4. Section 5 describes the measure of

performances of the plans. Numerical results

of the above example will be shown at the last

section.
2. Estimation of a Rejection Probability

Let consider a production process having a
lot of size N. We assume that the production
has the stochastic output process {X,, X, -,
X,). If the state of the process producing the
ith item s good, for example, in the above
example if /<Y, <u, then X~0, otherwise X=
1. The inspector tests each item sequentially
until 2 decision is made according to the
constructed sampling plan. Let C= 3 | X, be
the cumulative number of defective items
discovered through item i for i=1,2, ..., N and
let 7, =Pr(C,zj) be the rejection probability
of a lot under a production process. By



applying the method of Monte-Carlo integration
we can get the estimator of ¥, :

772 md(Czim,

where I{C.=j) is 1 if C,=f and { otherwise,
and m is the total number of simulation
replications. Denote ;=¥ 2 J(C;>}), which
represents the number of replications that j or
more defective items are found among @ items.
Then, the estimator 7“',}- is § ,y/m=S_§.

Now, let us define f=PrC=j be the
probability that there are exactly j defective
items among the i items, and define D, to be
the order of inspected item on which the jth
defective item found. The event {D; =i} means
that the jth defective item occurs at the ith
item and let the probability of this event is v,
Then the following two events A and B are
equivalent.

A={There are j or more defective itemns

among the first i1 items}={C, 2}

B={The jth defective item is found at or

before the ith item}={D,=<i}

Theorem 1 : Note that ¥,=1 and 7¥;;=0.
For all =1,2,-+,N and j=1,2, ---, i,
M v 7 70 D =75 Yij
Proof : Since the two events A and B are
equivalent, the probabilities of the two events
are also same. Thus,
7 #PHC,2)=Pr(D,< D)= T | P(D k)
+ 3 P DER=T iy
This gives that ¥ ;Y. =V

FEA 4Q YL 49 oiF ER AX A9 4As 37} 293

and ¥y i Y i j+,=f;;,u

Theorem 2 : The rejection probability 7 has
the following two monotonous properties for
i=1,2,-,N and j=1,2, -, i

(1) Column monotonous property of 7, : For
fixed j, 7, is non -decreasing when i increases,
ie, ¥y Yy, for k=i i+t - N.

(2) Row monotonous property of 7, : For
fixed i, 7, is non-increasing when j increases,

L6, 7,2 7, for k=jrl,j+2, 0

Proof :
(1) Since V;'JF 7;}" 7,‘.1J20; we get Tijz yf—l,_f‘

(2) Since fim 7 - 7120, weget ¥;Z 7, L.

3. Design of Double Sampling Plans

Let us define the decision variables #, a, r;
be the sample size, acceptance number, and
rejection number of the ith sampling stage for
=12 respectively. The goal of double sampling
plan is to find the 5 variables (n, a,,r,, 1, 13
since a,=r,-1 under producer’s risk @ at AQL
and consumer's risk # at LTPD. Probabilities
of the four events
A={Lot is accepted at the first stage},
A={Lot is accepted at the second stage},
R={Lot is rejected at the first stage}, and
R,={Lot is rejected at the second stage} are

respectively
Pr{A}=PC, <a)=1-7, ..
Pr{R,1=Pr{C, Zn}= 7, ,,

1‘1—1

PriA.)= ¥\ Pr(C, =RIPK(C, {rrk)
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Hlﬂf;l (-7, ), and
Pr R,}= Z HHPr(C =kPr(C, Zr-k)
k—a, sy &7y i
The rejection probability of a lot is
YR, Gy, T Mo B=Pr{R 4+ Pr{R,}

_ r-l
=7 nl,r1+ z k=a1+lfn|‘k Tn.lrz-k'

Theorem 3 :

Monotonous properties of the rejection pro-
bahility ¥ (n,, a, r,, 1, 1)
(1) Column monotonous property : For given
fixed n,a,, r, and r,, 7(n, a,r,m, r;) is non-
decreasing when n, increases, ie.,

rin,a,r, )= yn,a,r, n-1, 1),
(2, Row monotonous property : For given fixed
n,a,r, and r, v{n,a,r,m,r) is non-
increasing when r, increases, i.e.,

Y, a,rpn,rn DS y(n,a,r, 8, 1).
(3. Acceptance number monotonous property :
For given fixed n, and r, 7{n,a,r, m, 1) is
non-increasing when g, increases, ie., '

Y(n,a.ron, )= yln,a+1,rom,r, ).

Proof :
(1: 7(?1:; al! rl! nzs rz)' }'(ﬂt, ais r]’ n‘z'li rz)
Z kha +Lfn1‘k( ¥ my rek yng-l.rg-k)
Z k—a +1 ful‘kvnzrz—kzo
(2 7(nl! al! r]t "‘zs rz) y(nhall rl! nz, r2+1)
k—a, Lfnl k( 7 iy Fyk” ynz r2+l—£’)
,I:-a|+1 f;'l k fu?_rz
(3, T (n]’ ala rl! nz; rz)
7”1-’1 "“01* f”lk my rok
?ni,rl k—aplfnl k }'n?_‘rz
= ')’(ﬂ” atl, r,n, ?‘1)

Lemma 1 : We can repard that
? (nl's a]! r]) nl! ri)

'Snl ":+ Z k—a +1 (Sﬂpk-sﬂpk"")sﬂbrz'k
is an unbiased estimator of ¥ (n, 4, r, ny 1o,

ie.,

E[; (n]! al! rl! nz: rz)] = 7 (nl! al! r!! nzv -"z)- E
Proof : Refer to the Appendix.

Since a double sampling plan has five
decision variables there are considerable var-
ieties of sampling plans. Let us denote
8*=1- 8. The sampling plan has the following
two constrainis :

(1) a-constraint -

¥ {ny, @yt rAQL)= 6+ 6,5 @
(2) B-constraint :

3 (n, @, ro 7o LTPD)= 814 812 B°,

where ¢, and é: i=1,2, are probabilities that
a lot is rejected during the ith stage at AQL
and LTPD respectively.

Nelson[12] has suggested three selection
criteriz such as mmimum-n, nearest- ¢, mini-
mum-loss plans in single sampling plans {n, c),
where ¢ is the maximbm allowable number of
defects in n samples. Minimum-n criterion
selects a plan if we are interested in minimiz-
ing the sample size satisfying @ and £-
constraint. Nearest- @ criterion selects a plan
minimizing G-S_,-j over all feasible plans; that
is, to find the feasible plan that comes nearest

to the specified producers risk. Here, as one



of reasonable selection criteria, we will use
mintmum loss plan that minimizes loss func-
tion. The loss function is defined as :

un!! ala rh n!a }'z}: i ? (ng anFu n?, rl;AQL) - ]
+ ! ¥, a, ri, m, rsLTPD)- ﬁ* |

Finding the combination that minimizes the
loss function requires searching through all
possible combinations of variables, that is, the
search scheme must form five-level nested
iteration loops. The efficiency of the search
scheme is dependent on the search order and
the ranges of variables. The feasible ranges of

decision variables are as follows.

Variable Range
n 2, N2
I 2, -, m
a G, ,n2
% e, Ny
A Ry i1+

The variables will be decided in the order
from n, to r, as shown above. Practically,
however, the exhaustive enumeration of the
loss function for all the decision variables is
impossible because the total number of possible
combinations is very large if lot size N is fairly
large. The Total Loop Count (TLC) of the
possible combinations is

TLC= Z ,::Ir:zz "y zz rl—:nz M-n, z rl—l+n2]-

nEte =i = e
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For example, the following shows that TLC
increases polynomially when N increases.

N TLC
100 26,031,250
150 - 197,718,750
200 833,250,000
250 2,542,968,750
300 6,327,843,750

If properties of [S_,-j] are properly used and
the variable ranges are wel restricted by using
the relationships between them, the TLC can
be reduced. We will consider this at the mext

section,
4. Search Schemes

If the minimum and maximum values of &
and é* can be determined in advance before
the execution of all loop variable, the execution
of unnecessary iterations can be omitted, Only
when the observed intervals (min &, max &)
and (min ﬁ’A*, nax ‘é *) include true parameters
a and f} ! respectively, the next inner loop
will be executed. We will call such an interval
as the feasible interval. The narrower the
feasible interval, the more reduction of the
unnecessary iterations can be obtained. The
iterations continue until the decision variable
exceeds its final value. If both 2 and 8~
intervals include a feasible decision variable,
then the next inner loop will be executed. At

the inner loop, since one additional decision
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variable is known, more information for finding
the minimum and maximum of ¢ and 8 is
available. This,

searching interval range becomes narrower.

in turn, means that the

This procedure is repeated until the most inner
loop, that is, r, loop is reached. At this loop
level, since four decision variables n, a,, r,n,
are fixed, the narrowest feasible interval range
is obtained. Now the loss function can be
evaluated for each r, vartable. We will call this
search scheme as loop screen search scheme
(LSSS). To find the minimum and maximum
of & and #, at each loop level efficiently, in
other words to find the narrowest feasible
imervals, define the variables min & (n,, a,, 1, m),
min & (n,, @, ¥), min & (n,a), and mm & (n,)
are minimum values of ¥ (n,, ay, 1\, mz, rzAQL)
when the variables in the parenthesis are fixed
respectively. In a similar way, define max & (n,a,r,,
), max & (n, a,, r,), max &{n, a), and max &
(n,} -as the maximum values of ¥{n, a, r.n,
r;AQL) as above. The interval limits of & at
each loop level can be found from the
following proposition 1. The minimum and
maximum of ﬁ} * are defined and found exactly
the same way as & case at LTPD.
Proposition 1 : The interval limits for the
variable screening are as follows.
i1) The screen of r, loop :

min & (n,, &\, 11, R)=

S T a5, 605,y and
max & (n,, a;, r, m)=

n it Z kg +1( ny, k‘Snl k+1)Snz.r|

(2) The screen of n, loop :

min & (n., a;, )=
5., r]+ X H]“(S,., t‘sn, tum and
max & (m, al, r)=
m+ I me H{Sn] rSn] m)&u, ek
(3) The screen of a, loop :
min & (n,,a,)=
max & (m, a)=
TS R TN
(4) The screen of r, loop :
min & (n,)= S,] 485 10 SrrSi, S, .5, ,, and
max & (n.}-sn S0 s 1 1,_)31\;.,,[_

For the most outer », loop, we can not

decide the minimum and maximum values
because min & () and max &{n) are not
monotonous functions of #,.

Proof : Refer to the Appendix.

Now, we will discuss frontier line search
scheme{FLSS) to find variables n, and r, faster.
Since n,2n, and r,=r,, begin n, from #, and
r, from r.

If %(n,a,r,n, rsAQLX 2, the larger n, 18
required in order to increase the value of ¥ (n,,
@, r, fy; r;AQL) by the column monotonous
property. The increased n, reduces

| % (n, @, 1,y 113 ;AQL)- @ [(=L,). Contin-
uously increase only n, until ¢« -constraint is
violated, Then L, is minimized at this poini.
If n, increases more, it increases ¥ (n,, a;, r,, 1,
r;AQL) and hence degrades the loss function.
So, if ¥(n, a, r, n, r;AQL)) a, the larger r,



(a) LSSS

is required in order to decrease the value of
¥{n,a,r, n, r;AQL) by the row monotonous
property. Variable r, increases until it reaches
maximum value r-1+#, and at this time n, is
increased by 1. The procedure is repeated until
n, exceeds N-n,. The screening of variables (n,,
r,) is finished and the next screening loop of
a, is resumed. The searched point (n,, r,) forms
a frontier line, which is a set satisfying the
following property.

Property : For fixed n, a, and r,, there exists
a frontier line set F={(i, j) such that if
¥, ay, r, by AQLYS @, then ¥{(n,a,.r,
i,j AQLY e for i=izt1 or j=j-1}.

In other words, FLSS is a scheme that
searches the best decision variables (a1, 2)
when n1 ,at and r1 are fixed along the
frontier line set F. Figure 2 shows an example

of the feasible point set (n,r,) in LSSS and

59 AL AFE 42 <13 BE A4 A8y HA4 9t 297

~ (b) FLSS
Figure 2. The feasible area of (n, ) in LSSS and the frentier line set F in FLSS

frontier line set F in FLSS.

5. Measure of Performances for Depen-
dent Sampling Plans

The formula of measure of performance for
independent case directly can not be wvsed
because the fraction of defective is not constant
in dependent model. See Schilling[19] for the
formula of independent model, In case of semi
curtailed inspection, all n, items of the first
stage are inspected fully and curtailment occurs
only at the second stage. Under this condition,
average sample number(ASN) is

ASN=n+ ¥ ;L_;ﬁ,[nsz(C"zsrz.]-k)
+ X IPAD, =l n)|Pr(C, = k).

Since average total inspection(ATI) is not
affected by the curtailment strategy, from the
definition of ATI we have
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ATI=mPr{A,}+ (et n,)PriA, )+ N(Pr{R, )+ PriR.}).

To find the average outgoing quality(AQQ)
we need to know the average number of
defective iterns remaining in 2 lot and average
nunber of items actually shipped after inspec-
tion. We can obtain the expectation of C, as
follow,

HCET EPHC,2i)=E 7,2 Ly y

Let [Np)4 represent the number of defective
items among the item number i through j,
where jdi. Obviously, [Np}=[Npl4-INp]i
Since [Np]7 is simply C,, the expected value
of [Npl/ is

E{INp] }=ElINp)}-E{Np) )
=EICI-EIC, S h 7 £ Y s

Let N, be the fotal number of defective items
remaining in a lof of size N after inspection. Also
let NpiR, and Npj|A, are the number of defective
iterns remaining in a lot of size N under the evem
R, and A, for k=1,2 respectively. Then the expected
value of N, is

EIN=EN, | RIPr{R 1+ EINy | R.IPr{R, }+
EINp |AJPr{A,EIN | As]Pr{A;}
=E[Np | A\Pr{A.}+E[N, | A:JPr{A,},
whare
ENp | AFEN) 3 =2 £, 77T 47, , and
AN | ATFEWN) o, o E VN E 50 Y o
l_et N; denote the number of items actually
shipped after inspection. If all defective iterns

found are replaced with good ones, then N =

N. When the defective items found are
discarded and not replaced with good ones,
E[N(] is calculated as follow.

EIN J=(N-E{[Np] 'DIPr{AJ+Pr(R.}]
+V-E(NpI ¥ DPriA}+(N-r)Pr{R,}.

Now AOQ can be found from the definition AOQ=
ETN,VEIN ]

6. Implementation of Double Sampling
Plans and A Numerical Example

For numerical examples, we will consider ARMA
{1,1) time series model introduced earlier with lot
size N=300, a=0.1, #=0.1, AQL-0.01, LTPD=0.1
and number of replications m=10000. To illestrate
and compare the effect of the dependence, three
different cases are considered.

(1) independent case (8, 6)=(0, 0)

(2) dependent case showing diminishing correla-
tion for farther apart items in sequence, (¢,0)=
(025, 0.25)

(3) more dependence case, (¢, 8)=(0.5, 0.25)

The process measurements are dependent with lag

correlation :

o P51+ 9N 8+ 6)(1+ 6%4208),k=1,2, 3.

(0.5,0.25)
0.64(0.5)+

(¢,8) |{0,0}
i 0

{(0.25,0.25)
0.45(0.25)«"

Many selection criteria have been suggested
(Pfanzagl[15]) for selecting double sampling
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plans. Usually, trial and error procedures have
been attempted widely (Guenther[8], Qlorun-
niwo and Salas(12]), As a selection criterion,
the following restricted plans will be consi-
dered and compared with each other.

Plan Restrictions
M None

D2 =

D3 =2

D4 h=r

D5 =20, h=1

Table 1 shows the efficiency of E.SSS and
FLSS in finding double sampling plans for
increasing variance case when (¢, ¢ )=(0.25,
0.25). The summaries of the simulation results
of the increasing variance case are shown in
Table 2 and Table 3, and the resubis of the
shifted mean case are shown in Table 4 and
Table 5 including single sampling plan to
compare with other plans. Simulation was
performed on an IBM PC with Pentium
133MHz processor.

Table 1. Efficiency of search schemes for
increasing vartance, (¢, 6)={0.25,0.25)

n T a, TLC
total 14 | 10865 | 533 [6,327,843,750
sureened 128 | 189 | 230 44052
screened {%)| 86.6% | 1.7% | 44.1% | 0 .000696%

In Table 1, the row “total” and “screened”
represent number of loop counts before and

after applying search schemes respectively,

Among the 149 iterations of », loop, 129
iterations(86.6%) have feasible intervals. For
loop r, and & loops, 1.7% and 44.1 % have
feasible intervals respectively. The column
“TLC” shows the total iterations of the loss
function, Among the exhaustive TLC=6,327,843,750
iterations, only 44,052(0.000696%) iterations
are executed, which shows that the L8SS and
FLSS are very efficient algorithms by reducing
the unnecessary iterations remarkably.

In Table 2 and 4, @ and A'(=1-5)
represent the observed rejection probabilities at
AQL and LTPD respectively. As expected, plan
Dl(no restriction) selected a minimum loss
plan. Some plan got the same results of other
plan coincidentally, for example, D3 and D3,
D1 and D4 when (¢,6)=(0, 0} and {0.25,
0.25}. Comparing the loss, we can see that plan
D2(r,=n, restriction) has stricter restriction than
plan D4(r=r, restriction). In general, plan D3
(n=2n, restriction) having the same or similar
result of DI seems more reasonable than D2
or D4. Plan D5(the strictest restrictions, n.=2x,,
r=r1) resulted in larger loss than others. The
less precision of & or larger loss in a single
plan shows that double sampling plans select
more elaborate plans. The most outstanding
feature is that the larger dependence resulted
in the larger sample size or decision variables
of both single and double sampling plans.

Table 3 and 5 show the measure of
performances of sampling plans. The ASN is
smaller than that of single sampling plan at
AQL, which is one of the advantage of the
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Table 2. The selected sampling plans for increasing variance

($,8) plan noa  n o f & i’ loss
single 38 2 0.057 0.901 4.37E-02
D1 23 ¢ 2 5 2 0.100 0.904 4.54E-03
{0,0) D2 4 0 2 24 2 0.069 0.896 3.52E-02
D3 23 0 2 46 2 0.094 0.903 8.99E-03
D4 23 0 2 51 2 0.100 0.904 4.54E-03
D5 22 0 2 46 2 0.094 0.903 8.99E-03
single 42 2 0.073 0.902 2.87E-02
D1 % 0 2 49 2 0.100 0.903 2.82E-03
{0.25,0.25) D2 28 0 2 28 2 0.084 0.907 2.31E-02
D3 25 0 2 50 2 0.097 0.893 1.05E-02
D4 26 0 2 49 2 0.100 0.903 2.82E-03
D5 25 0 2 50 2 0.097 0.893 1.05E-02
single 48 2 p.105 0.899 6.10E-03
D1 32 0 2 88 3 0.100 0.902 1.54E-03
{0.5,0.25) D2 3 0 2 33 2 0.105 0.898 6.98E-03
D3 33 0 2 66 3 0.091 0.906 144602
D4 2 0 3 122 3 0.100 0.903 286E-03 |
D5 49 1 3 98 3 0.074 0.904 2.4E-02 |

Table 3. Measure of performances for increasing variance

at AQL at LTPD
(¢,8) pan 1 ASN  ACQno  AOQ ATI ASN  ADQ no ACQ AT)
. out replace  replace cut replace replace

single | 37.2 00084 00084 530 19.0 0.0087 0.0087 2740
D1 295 0.0083 00082 565 239 0.0080 0.0088 2735
{0,0) D2 27.8 D.0086 00086 468 24.8 0.0096 Q.0094 2717
B3 29.0 0.0084  0.0083 548 24.0 0.0090 0.0088 2733
D4 285 0.0083 0.0082  56.5 239 0.0090 0.0088 2735
D3 290 0.0084 00083 546 24.0 0.0090 00089 2733
single | 408 0.0080 00080 609 20.3 0.0085 0.0084 2747
D1 322 0.0081 0.0081 58.9 289 0.0088 0.0088 2735
{0.25,0.25} D2 323 0.0082 0.0082 548 288 0.0084 ¢.0083 275.0
D3 314 0.0081 0.0081 571 260 0.0093 0.0098 2706
D4 322 0.0081 0.0080 589 26.9 0.0089 0.0088 2735
D5 32.2 0.0081 0.0081 57.1 26.0 0.0099 00088 2706
single | 45.9 0.0075  0.0075 744 226 0.0086 0.0085 2745 .
L1 446 Q0077 00077 702 33.5 0.0089 0.0088 2737 |
(0.5,0.25) D2 376 0.0079 00078 853 338 ¢.00m 0.00sc 2731
D3 431 0.0078  0.0076 669 34.5 0.0084 0.0082 2752
D4 50.8 0.0076  0.0075 748 353 0.0088 0.0087 2739
D5 52.9 0.0077 00077 709 49.4 0.0082 0.0081 275.8
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Tabie 4. The selected sampling plans for shifted mean

(¢’9) plan noa o onon & .é, loss
single 38 2 0.056 0.803 4. 72E-02
D1 2 0 2 &5 2 0.100 0.90% 1.12E-03
(0,0} D2 24 Q0 2 24 2 0.068 0.904 3.67E-02
D3 2 0 2 4 2 0.086 0.899 1.45E-02
D4 2 0 2 57 2 0.100 0.901 1.12E-03
D5 2 0 2 44 2 0.086 0.899 1.45E-02
single 45 2 0.081 0.90t 2.07E-02
D1 29 ¢ 2 39 2 0.100 0.900 4.13E-04
{0.25,0.25) D2 3 0 2 30 2 0.091 0.801 9.82E-03
D3 25 0 2 50 2 0.096 0.870 3.46E-02
D4 29 0 2 39 2 0.100 0.900 4,13E-04
D5 25 0 2 50 2 0.096 0.870 3.46E-02
singie 54 2 - 0.121 0.896 2.45E-02
b1 33 0 2 50 3 0.100 0.900 ~ 4.90E-04
{0.5,0.25) D2 a8 0 2 38 2 0.125 0.900 2.56E-02
D3 5 1 3 110 3 0.089 0.901 1.23E-02
D4 5 1 3 158 3 0,100 0.901 1.24E-03
D5 5 1 3 110 3 0.089 0.901 1.23E-02

Table 5. Measure of performances for shifted meon

at AQL at LTPD
(¢,8) plan ASN AOQ no  ADQ ATI ASN  AOQ no AQQ AT
cut replace  replace cut replace replace

single 37.3 0.0083 0.0083 527 18.9 0.0085 0.0085 2747
D1 28.7 0.0082 0.0082 355 231 0.0093 0.0032 2725
(0,0) D2 278 0.0086 0.0085 463 24.9 0.0088 0.0087  274.0
D3 275 0.0084  0.0084 509 231 0.0094 ¢.0083 2721
D4 28.7 0.0082 0.0082  B&5 23.1 0.0093 £.0092 272.5
b5 215 00084 00084 508 23.1 0.0094 00083 272
singe | 436 0.0078  0.0078 658 212 0.0084 00084 2749
D1 347 0.0079 0.0079 614 298 0.0090 0.0089 2732
{0.25,0.25) D2 34.8 0.0080 0.0080 5941 30.8 0.0088 0.0088 2737
D3 3 0.0081 0.0080  56.7 26.2 0.0120 ¢.0119 264.4
D4 347 0.0079 0.0079 814 29.8 0.0090 0.0089 273.2
D5 31.1 (.0081 0.0080 56.7 26.2 0.0120 0.011¢ 2644
single ; 51.2 0.0072 0.0072 838 242 0.0085 0.0085 2745
D1 479 ¢.0075 00075 736 40.5 0.0086 00084 2748
{0.5,0.25) D2 43.7 00075 00074 761 38.8 0.0087 0.0086 2741 |
K] 59.9 00073 0.0073 806 55.4 ¢.0082 0.0081 2758
D4 61.1 0.0072 00072 833 55.4 0.0082 0.0081 275.8
D5 59.9 0.0073 00073 806 55.4 0.0082 0.0081 275.8
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double sampling plans, but larger at LTPD. The
more dependence makes the more improvement
of AOQ, but replacing the defective items does
not improvc' AOQ much. Since there is no
much difference of AOCQ at both AQL and
LTPD between the plans, acceptable choice
might be a plan having smaller ASN. The ATI
becomes larger when dependence increases at
AQL but not much at LTPD.

7. Conclusion

In this paper, an efficient design procedure
of the double sampling plané for the dependent
production process models is discussed. In
actual implementation of sampling plans, it has
been a common occurrence that people just
ignore the dependence. But this is due to the
lack of suitable methodologies handling the
dependent problems not due to the unimpor-
tance of dependence. Some QU engineers just
took samples far enough apart to avoid
dependence. But this effort is not always
possible especially when the samples are
inspected in order. Although control chart can
be used to check the process status, its
application is based on the independent obser-
vetion, Moreover, if producers and consumers
risk should be considered when dependence
exists, it must not be used.

The specific application requires statistical
model identification which seems to be an
important further study area, This can be done
by observing and collecting the process data

using commercial statistical packages. We can
assume many dependent process models such
as Markov model, Polya process model or time
series model, etc. The correct setup of
dependent model is important and must be
validated. Simulation of the real situation may
help in setting up the dependent model. These
extra effort can be compensated by avoiding
the risk of wrong decision making in sampling

plans for dependent production processes.
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Appendix

Proof of Lemma 1 :

!‘II

EL¥(n, a, r, n, ?‘2)]=E[S"1, r|]+ z k=_al+1{E[Sn1,k Snz, rz—k}'E[SnI, kv 1 Suz, rz—ic]}
Let us consider the second expectation term of the right hand side first.

E[Sﬂp k Sﬂz. fz-k]= COV[SRI, ks Sn:, rz—ic]+E[Sn|, k] E[Sn2, rz-k]]
The covariance term is
COV[SM], ks Snz. rz-k]=c0rr[sn1, & Snz, rz—i:]{ Vﬂ?’[snl‘ k]Vﬂf‘[SnT rz-k]
=CorrlSu, s Su, rall 7 n K17 DYy 107, Pim<1/4m).
Usually replication number m is fairly large, hence 1/(4m)=0. Thus,
-E[Snl. k Snz, rz—k] aE[SM,, &) E[Snz, rz-k]]: ynl, k yﬂz» ke
Therefore, the second term becomes

-l T T g A
z k=al+IE[Sﬂp E Snz‘ rg-k] =3 kl:aln 7 nk j"n.z, rokt

Similarly, we can show that E[S, e Sp o dl =7V, iV e

i -l -

Therefore, £[ ¥ (n, a, r ny B2 Y, b % 8 laid Y k¥ ny k= Vo b1 7 k)
r-l

= 7 "1- rt+ Z j:l=al+1 7"2' rz_k( y"l‘ k - T"I‘ kH): 7(”1, an ru nz, rz)-

Proof of Proposition 1 :

(1} Since r, is the most inner loop variable, variables n, a, r,, n, are already fixed. Then, we
can decide the minimum and maximum vafues of & and .8 * in advance before the actual execution
for all r, by the monotonous properties. Since r, <r,<r-1+n,, ¢ has minimum value at r=r-i+
n, by the row monotonous property. The maximum of & occurs at r=r, by the column monotonous
property. The proof follows by assigning r, to ¥, , @, , r, , 8, , r, ;AQL). Thus

min & (n, a,, r, ny= ¥{n, a, r, n, r-lvn, ;AQL), and

max & (n, a, r, n)=¥(n, a, r, n, r, ;AQL).

i2) Before the execution of n, loop, three variables n, a,, r, are fixed. Therefore, the interval
range must be wider than that of r, because n, and », are not fixed yet. This implies that the
minimum of n, loop must be smaller than the minimum of r, loop and the maximum of », loop
must be larger than the maximum of r, loop, ie.,

min & (n, a, r)<min &z, a, r, n,), and

max & (n,, a,, r)Zmax &(an,, a, r, n)

Since n,=n,<N-pn, the minimum occurs when min & (n,, a,, r,, n,) has n=n, and the maximum

occurs when max & (n,, a, r, n,) has n=N-n, by the monotonous property. Thus,
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min & (n,, a,, r)=min & {n, a, r, n)= %0, a, r, n, r-1+#n, ;AQL), and

max & (n, @, r)=maxé(n, a, r, N-n)= ¥n, a, r, N-n, r, ;AQL).

{3) Before the execution of a, loop, two variebles n, and r, are fixed. Clearly,

min & (n,, a¢)<miné& (n, a, r,), and max & (z, a,)=max &, a, r,).

Note that 0=a =<r-2. By the accepiance number monotonous property, the minimum occurs
when min & (n, g, r) has a=r-2, and the maximum occurs when max & (x,, @, r) has a=0,
Therefore,

min &(n,, @)=min & (n, , r-2, r)= %, r, -2, r, n, r-1+n, ;AQL), and

max &{n,, a)=max &(n, 0, r)=%(n, 0, r,, N-n, r, ;AQL).

14) At this level only n, is fixed. Therefore, min & (7)<min & (n,, a,), and max & {»,)>max &
(n,, a). Note that min & (n,, a,) and max & (n, , @,} are functions of n, and r,. The value min &

(n,} is found from min & (s, a,) as follow. Since n, is fixed, the terms (1-S,,} and S, , are

positive constants. Both S, ., and min &(n, @)=S,, ,+ Gy -Sn, IS0 1 =Sn, (1-Sy, 1)

+8 Ay, el 3: , are non-increasing monotone functions. Therefore, the minimum occurs when min &
{n, , @) has ri=n, since 2<r <p, Thus, min & (n)= ¥, n-2, n, n, 2n-1 ;AQL).

To find max & (n,), rewrite max & (n,, a,) as follow.

max & (n,, a)=S, ,+% 1S, S, PO IV PE=Y SIS S P T [N
=S.-:.‘ r]+(sn1, I'Snl, rl)SN—n,, FS:;I. rl(l'SN—nl, I)+Snl, 1 SN_,," b

The last equation is a function of only fr_[ since SN-upl is a constant, Therefore, the maximum
occurs when max & (1, @,) has r=2. Thus, max &{n)= ¥(n, 0, 2, N-n,, 2 ;AQL)

=St T b iSn, eeSnon, =S, 8 S Inim




