• Title/Summary/Keyword: ANFIS model

Search Result 134, Processing Time 0.023 seconds

Design of Intelligence State Diagnosis System for TMS (지능형 TMS 상태진단 시스템개발)

  • 김이곤;김서영;최홍준;유권종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.386-392
    • /
    • 2001
  • We design the intelligent diagnosis system for deciding on operation state of TMS Analyzer in this paper. We propose the method to model the neuro-fuzzy model for diagnosing theoperation state of analyzer by using input and output signals of TMS to measure Nox and SOx. By using experiment data, neuro-fuzzy model is investigated. Validity of the proposed system is asserted by numerical simulation.

  • PDF

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

A Plasma-Etching Process Modeling Via a Polynomial Neural Network

  • Kim, Dong-Won;Kim, Byung-Whan;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • A plasma is a collection of charged particles and on average is electrically neutral. In fabricating integrated circuits, plasma etching is a key means to transfer a photoresist pattern into an underlayer material. To construct a predictive model of plasma-etching processes, a polynomial neural network (PNN) is applied. This process was characterized by a full factorial experiment, and two attributes modeled are its etch rate and DC bias. According to the number of input variables and type of polynomials to each node, the prediction performance of the PNN was optimized. The various performances of the PNN in diverse environments were compared to three types of statistical regression models and the adaptive network fuzzy inference system (ANFIS). As the demonstrated high-prediction ability in the simulation results shows, the PNN is efficient and much more accurate from the point of view of approximation and prediction abilities.

  • PDF

Fuzzy Modeling and Design of Fuzzy Controller Using Fuzzy Clustering (퍼지 클러스터링을 이용한 퍼지 모델링과 퍼지 제어기의 설계)

  • Kwag, Keun-Chang;Park, Sang-Min;Ryu, Jeong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.675-678
    • /
    • 1997
  • In this paper, we present a fast and robust algorithm for the design of fuzzy controller and identifying fuzzy model from numerical data by combining the cluster estimation method with a linear least squares estimation procedure. The proposed method is compared with Adaptive Neuro-Fuzzy Inference System(ANFIS) as the standard example of neuro-fuzzy model. Finally we will show its usefulness and effectiveness for the design of fuzzy controller of a cart-pole system and fuzzy modeling for the coagulant dosing of a water purification system.

  • PDF

Design of Intelligent State Diagnosis System for TMS Using (뉴로-퍼지를 이용한 지능형 TMS 상태진단 모델 설계)

  • 김이곤;최홍준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.695-700
    • /
    • 2001
  • We design the intelligent diagnosis system for deciding on operation of TMS Analysis in this paper. We propose the method to model the neuro-fuzzy model for diagnosing the operation state of analyzer by using input and output signals of TMS and Expert's experiment data. Validity of the proposed system is asserted by numerical simulation.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.