• Title/Summary/Keyword: AM materials

Search Result 474, Processing Time 0.021 seconds

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Atomic Resolution Scanning Transmission Electron Microscopy of Two-Dimensional Layered Transition Metal Dichalcogenides

  • Lu, Ning;Wang, Jinguo;Oviedo, uan Pablo;Lian, Guoda;Kim, Moon Jea
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.225-229
    • /
    • 2015
  • Transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D) materials that have attracted growing interest because of their promising applications. The properties of TMDs strongly depend on the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. Though electrical, mechanical, and magnetic studies of 2D materials are being conducted, there is an evident lack of direct atom-by-atom visualization, limiting insight on these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging. We have identified the atomic arrangements and defects in 2H stacked TMDs, 1T stacked TMDs, distorted 1T stacked TMDs, and vertically integrated heterojunctions of 2D TMDs crystals.

Synthesis of Novel Quinacridone Dyes and Their Photovoltaic Performances in Organic Dye-sensitized Solar Cells

  • SaKong, Chun;Kim, Se-Hun;Yuk, Sim-Bum;Kim, Jeong-Yun;Park, Se-Woong;Ko, Min-Jae;Kim, Jae-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2553-2559
    • /
    • 2011
  • Two novel quinacridone (QNC) dyes with thiophene or benzene-conjugated bridge and cyanoacrylic acid acceptor were first designed and synthesized for use in dye-sensitized solar cells (DSSCs). The absorption spectra, electrochemical and photovoltaic properties of these dyes were investigated. Under simulated AM 1.5G irradiation conditions, the solar cell based on the quinacridone dye containing thiophene as a bridge unit had a short-circuit photocurrent density of 8.51 $mA{\cdot}cm^{-2}$, an open-circuit voltage of 643.6 mV, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.86%.

Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process (DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성)

  • Yu-Jeong An;Ju-Yeon Han;Hyunjoo Choi;Se-Eun Shin
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.262-267
    • /
    • 2023
  • Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul;Sander, Anna;Wu, Yanyun;Felber, Roland;Lauer, Hans-Christoph;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.

Technical Overview on the Electron Backscattered Diffraction Sample Preparation

  • Kim, Dong-Ik;Kim, Byung-Kyu;Kim, Ju-Heon
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.218-224
    • /
    • 2015
  • A technical overview on the various sample preparation methods for electron backscattered diffraction (EBSD) analysis is carried out. The mechanical polishing with colloidal silica finish, electro-chemical polishing, dual layer coating and ion beam milling are introduced for the common sample preparation methods for EBSD observation and some issues that are frequently neglected by the common EBSD users but should be considered to get a reliable EBSD data are discussed. This overview would be especially helpful to the people who know what EBSD technique is but do not get a reliable EBSD data because of difficulties in sample preparation.

Direct Determination of Cationic Disordering in Sodium Bismuth Titanate

  • Choi, Si-Young;Ikuhara, Yuichi
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.164-173
    • /
    • 2012
  • The relaxor ferroelectric feature in lead-free perovskite oxides, where the dipoles are randomly oriented and they can be feasibly aligned parallel to the external bias, is attracting lots of attention in the field of piezoelectric materials science, since it is one of candidates to replace the toxic lead-based materials that are still being commercially used. However, the origin of relaxor characteristic and its related atomic structure are still ambiguous. In this study, $Na_{1/2}Bi_{1/2}TiO_3$, chosen as a model relaxor system, was found to exhibit a cationic-disordered atomic structure; and furthermore the nonpolar atomic structure and its related oxygen tilting were ascertained via annular bright field imaging skill. We also found that this cationic disordering gives rise to the local formation of atomic vacancies.

Quantitative Evaluation of Dislocation Density in Epitaxial GaAs Layer on Si Using Transmission Electron Microscopy

  • Kim, Kangsik;Lee, Jongyoung;Kim, Hyojin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.74-78
    • /
    • 2014
  • Dislocation density and distribution in epitaxial GaAs layer on Si are evaluated quantitatively and effectively using image processing of transmission electron microscopy image. In order to evaluate dislocation density and distribution, three methods are introduced based on line-intercept, line-length measurement and our coding with line-scanning method. Our coding method based on line-scanning is used to detect the dislocations line-by-line effectively by sweeping a thin line with the width of one pixel. The proposed method has advances in the evaluation of dislocation density and distribution. Dislocations can be detected automatically and continuously by a sweeping line in the code. Variation of dislocation density in epitaxial GaAs films can be precisely analyzed along the growth direction on the film.

Direct Observation of Heterogeneous Nucleation in Al-Si-Cu-Mg Alloy Using Transmission Electron Microscopy and Three-dimensional Atom Probe Tomography

  • Hwang, Jun Yeon;Banerjee, Rajarshi;Diercks, David R.;Kaufman, Michael J.
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • The heterogeneous nucleation of the ${\Theta}^{\prime}$ phase on nanoscale precipitates has been investigated using a combination of three-dimensional atom probe tomography and high-resolution transmission electron microscopy. Two types of ${\Theta}^{\prime}$ phases were observed, namely small (~2 nm thick) cylindrical precipitates and larger (~100 nm) globular precipitates and both appear to be heterogeneously nucleated on the nanoscale precipitates. The composition and crystal structure of precipitates were directly analyzed by combination of two advanced characterization techniques.

Workflow of Cryo-Electron Microscopy and Status of Domestic Infrastructure

  • Choi, Ki Ju;Shin, Jae In;Lee, Sung Hun
    • Applied Microscopy
    • /
    • v.48 no.1
    • /
    • pp.6-10
    • /
    • 2018
  • Cryo-electron microscopy (cryo-EM) allows the analysis of the near-native structures of samples such as proteins, viruses, and sub-cellular organelles at the sub-nano scale. With the recent development of analytical methods, this technique has achieved remarkable results. The importance of cryo-EM gained wide recognition due to last year's award of the Nobel Prize in Chemistry. To help promote the knowledge of this technique, this paper introduces the basic workflows of cryo-EM and domestic cryo-EM service institutes.