DOI QR코드

DOI QR Code

Atomic Resolution Scanning Transmission Electron Microscopy of Two-Dimensional Layered Transition Metal Dichalcogenides

  • Lu, Ning (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Wang, Jinguo (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Oviedo, uan Pablo (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Lian, Guoda (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Kim, Moon Jea (Department of Materials Science and Engineering, The University of Texas at Dallas)
  • Received : 2015.09.21
  • Accepted : 2015.09.30
  • Published : 2015.12.30

Abstract

Transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D) materials that have attracted growing interest because of their promising applications. The properties of TMDs strongly depend on the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. Though electrical, mechanical, and magnetic studies of 2D materials are being conducted, there is an evident lack of direct atom-by-atom visualization, limiting insight on these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging. We have identified the atomic arrangements and defects in 2H stacked TMDs, 1T stacked TMDs, distorted 1T stacked TMDs, and vertically integrated heterojunctions of 2D TMDs crystals.

Keywords

References

  1. Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
  2. Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, and Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263-275. https://doi.org/10.1038/nchem.1589
  3. Dawson W G and Bullett D W (1987) Electronic-structure and crystallography of $MoTe_2\;and\;WTe_2$. J. Phys. C Solid State 20, 6159-6174. https://doi.org/10.1088/0022-3719/20/36/017
  4. Gong C, Zhang H J, Wang W H, Colombo L, Wallace R M, and Cho K J (2013) Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel fi eld effect transistors. Appl. Phys. Lett. 103, 053513. https://doi.org/10.1063/1.4817409
  5. Hartel P, Rose H, and Dinges C (1996) Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93-114. https://doi.org/10.1016/0304-3991(96)00020-4
  6. Ilatikhameneh H, Tan Y, Novakovic B, Klimeck G, Rahman R, and Appenzeller J (2015) Tunnel fi eld-effect transistors in 2D transition metal dichalcogenide materials. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 12-18. https://doi.org/10.1109/JXCDC.2015.2423096
  7. Jena D (2013) Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585-1602. https://doi.org/10.1109/JPROC.2013.2253435
  8. Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, and Robinson J A (2015) Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311. https://doi.org/10.1038/ncomms8311
  9. Lin Y C, Lu N, Perea-Lopez N, Li J, Lin Z, Peng X, Lee C H, Sun C, Calderin L, Browning P N, Bresnehan M S, Kim M J, Mayer T S, Terrones M, and Robinson J A (2014) Direct synthesis of van der Waals solids. ACS Nano 8, 3715-3723. https://doi.org/10.1021/nn5003858
  10. Mak K F, Lee C, Hone J, Shan J, and Heinz T F (2010) Atomically thin $MoS_2$: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805. https://doi.org/10.1103/PhysRevLett.105.136805
  11. Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M, and Kondo Y (2009) Visualization of light elements at ultrahigh resolution by STEM annular bright fi eld microscopy. Microsc. Microanal. 15, 164-165. https://doi.org/10.1017/S1431927609093891
  12. Oviedo J P, Santosh K C, Lu N, Wang J G, Cho K, Wallace R M, and Kim M J (2015) In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfi de. ACS Nano 9, 1543-1551. https://doi.org/10.1021/nn506052d
  13. Perea-Lopez N, Elias A L, Berkdemir A, Castro-Beltran A, Gutierrez H R, Feng S M, Lv R T, Hayashi T, Lopez-Urias F, Ghosh S, Muchharla B, Talapatra S, Terrones H, and Terrones M (2013) Photosensor device based on few-layered $WS_2$ films. Adv. Funct. Mater. 23, 5511-5517. https://doi.org/10.1002/adfm.201300760
  14. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, and Kis A (2011) Single-layer $MoS_2$ transistors. Nat. Nanotechnol. 6, 147-150. https://doi.org/10.1038/nnano.2010.279
  15. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712. https://doi.org/10.1038/nnano.2012.193
  16. Wilson J A and Yoffe A D (1969) Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193-335. https://doi.org/10.1080/00018736900101307
  17. Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, and Zhang H (2012) Single-layer $MoS_2$ phototransistors. ACS Nano 6, 74-80. https://doi.org/10.1021/nn2024557
  18. Yue R Y, Barton A T, Zhu H, Azcatl A, Pena L F, Wang J, Peng X, Lu N, Cheng L X, Addou R, Mcdonnell S, Colombo L, Hsu J W P, Kim J, Kim M J, Wallace R M, and Hinkle C L (2015) $HfSe_2$ thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9, 474-480. https://doi.org/10.1021/nn5056496
  19. Zhang K, Feng S, Wang J, Azcatl A, Lu N, Addou R, Wang N, Zhou C, Lerach J, Bojan V, Kim M J, Chen L Q, Wallace R M, Terrones M, Zhu J, and Robinson J A (2015) Manganese doping of monolayer $MoS_2$: the substrate is critical. Nano Lett. doi: 10.1021/acs.nanolett.1025b02315.