• Title/Summary/Keyword: ALOHA

Search Result 252, Processing Time 0.034 seconds

Bayesian Cognizance of RFID Tags (Bayes 풍의 RFID Tag 인식)

  • Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.70-77
    • /
    • 2009
  • In an RFID network consisting of a single reader and many tags, a framed and slotted ALOHA, which provides a number of slots for the tags to respond, was introduced for arbitrating a collision among tags' responses. In a framed and slotted ALOHA, the number of slots in each frame should be optimized to attain the maximal efficiency in tag cognizance. While such an optimization necessitates the knowledge about the number of tags, the reader hardly knows it. In this paper, we propose a tag cognizance scheme based on framed and slotted ALOHA, which is characterized by directly taking a Bayes action on the number of slots without estimating the number of tags separately. Specifically, a Bayes action is yielded by solving a decision problem which incorporates the prior distribution the number of tags, the observation on the number of slots in which no tag responds and the loss function reflecting the cognizance rate. Also, a Bayes action in each frame is supported by an evolution of prior distribution for the number of tags. From the simulation results, we observe that the pair of evolving prior distribution and Bayes action forms a robust scheme which attains a certain level of cognizance rate in spite of a high discrepancy between the Due and initially believed numbers of tags. Also, the proposed scheme is confirmed to be able to achieve higher cognizance completion probability than a scheme using classical estimate of the number of tags separately.

Effects of GA3, BA, Zeatin and Kinetin on Flowering of Oncidium 'Aloha' (온시디움 'Aloha'의 개화에 미치는 GA3, BA, Zeatin 및 Kinetin의 영향)

  • Lee, Jong-Suk;Park, Byoung-Mo;Park, Hark-Bong
    • Horticultural Science & Technology
    • /
    • v.17 no.2
    • /
    • pp.134-135
    • /
    • 1999
  • In order to improve quality and to accelerate blooming time in potted Oncidium 'Aloha', foliar spray of $GA_3$, BA, zeatin, and kinetin were applied on June 1 and June 15. The plant growth regulators did affect the improvement of number of peduncles, pedicels and florets, and shortened flowering time. Especially, number of peduncles and of florets were remarkably increased by foliar application of BA solution. And the flower opening time were shortened 26 days by 100mg/L BA treatment compare with control.

  • PDF

Slotted ALOHA Based Greedy Relay Selection in Large-scale Wireless Networks

  • Ouyang, Fengchen;Ge, Jianhua;Gong, Fengkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3945-3964
    • /
    • 2015
  • Since the decentralized structure and the blindness of a large-scale wireless network make it difficult to collect the real-time channel state or other information from random distributed relays, a fundamental question is whether it is feasible to perform the relay selection without this knowledge. In this paper, a Slotted ALOHA based Greedy Relay Selection (SAGRS) scheme is presented. The proposed scheme allows the relays satisfying the user's minimum transmission request to compete for selection by randomly accessing the channel through the slotted ALOHA protocol without the need for the information collection procedure. Moreover, a greedy selection mechanism is introduced with which a user can wait for an even better relay when a suitable one is successfully stored. The optimal access probability of a relay is determined through the utilization of the available relay region, a geographical region consisting of all the relays that satisfy the minimum transmission demand of the user. The average number of the selection slots and the failure probability of the scheme are analyzed in this paper. By simulations, the validation and the effectiveness of the SAGRS scheme are confirmed. With a balance between the selection slots and the instantaneous rate of the selected relay, the proposed scheme outperforms other random access selection schemes.

Energy Effective Tag Anti-collision Protocol for Mobile RFID System (에너지 효율적인 모바일 RFID용 태그 충돌방지 프로토콜)

  • Cho, Yang-Hyun;Kook, Joong-Gak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2012
  • This paper is to improve an identification ratio of tags by analyzing Slotted ALOHA, Dynamic Slotted ALOHA, Binary-tree and Query-tree and shortening the tag identification time in mobile RFID. Also, it enables the stable information transmission of tags by saving backscattering power of tags through shortening of identification time. As a result, this increases the available time of the battery and accessibility to a RFID service. For this, we proposed the energy-efficient tag anti-collision protocol for mobile RFID. The proposed scheme shows advanced result in identification time and collision counts. This scheme may be the first attempt for the mobile anti-collision.

A Study on the Reasonable Estimation of Consequence of Chemical Release (화학사고 피해영향 범위의 합리적 산정방안에 대한 연구)

  • Cho, Guysun;Lim, Juntaig;Han, Jeongwoo;Baek, Eunsung;Yu, Wonjong;Park, Kyoshik
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.20-28
    • /
    • 2020
  • In this study, the damage impact range in the case of a hydrofluoric acid leak accident was predicted using formula calculation, impact assessment simulations, and CFD simulations, and the results were compared and analyzed with the actual environmental impact report. Formula calculation was performed by using the leak source model and diffusion model. Impact assessment simulation was performed by KORA provided by the Korean Ministry of Environment, ALOHA by the United States Ministry of Environment, and PHAST, which is relatively widely used among commercialization programs, and the STAD-CMM+program for CFD simulation. Was utilized. Considering convenience, speed, acceptability, and economics from the user's perspective, ALOHA and KORA were the most appropriate methods for predicting the impact of hydrofluoric acid leakage. In addition, the results of this study will help to reduce unnecessary regulations in the process of government policy development and optimize the investment in the safety field of the company, effectively utilizing the limited resources of the government and the company.

Reader anti-collision method on frame slotted aloha using null frame (Null Frame 기법을 이용한 Frame Slotted Aloha기반 리더 충돌 방지 기법)

  • Lee, Sung-Jun;Lim, You-Seok;Hwang, Jae-Ho;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • As RFID technology is developing and increasingly being used in many applications, the implementation is changing from single reader to multiple readers even dense readers. Since the number of readers is increasing, there are more collisions between readers and much interference between readers and tags. Therefore, to avoid interference or collision, many algorithms have being proposed, such as Gen2 dense mode, LBT(listen before talk), TDMA based method. In this paper, we propose a null frame algorithm, which calculates the collision probability in frame slotted aloha scheme and use this information to avoid the possible collisions. Comparing with conventional scheme, our proposed algorithm has some advantages in terms of reader collision number and required frame numbers.

Elementary MAC Scheme Based on Slotted ALOHA for Wireless Passive Sensor Networks (무선 수동형 센서 망을 위한 Slotted ALOHA 기반의 기본적인 MAC 방식)

  • Choi, Cheon Won;Seo, Heewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • A wireless passive sensor network is a network which, by letting RF sources supply energy to sensor nodes, is - at least theoretically - able to live an eternal life without batteries. Due to the technological immaturity, however, a wireless passive sensor network still has many difficulties; energy scarcity, non-simultaneity of energy reception and data transmission and inefficiency in data transmission occurring at sensor nodes. Considering such practical constraints, in this paper, we propose an elementary MAC scheme supporting many sensor nodes to deliver packets to a sink node. Based on a time structure in which a charging interval for charging capacitors by using received and an acting interval for communicating with a sink node are alternately repeated, the proposed MAC scheme delivers packets to a sink node according to slotted ALOHA. In general, a contention-type scheme tends to exhibit relatively low throughput. Thus, we multilaterally evaluate the throughput performance achieved by the proposed MAC scheme using a simulation method. Simulation results show that the network-wide throughput performance can be enhanced by properly setting the length of acting interval.

Hybrid S-ALOHA/TDMA Protocol for LTE/LTE-A Networks with Coexistence of H2H and M2M Traffic

  • Sui, Nannan;Wang, Cong;Xie, Wei;Xu, Youyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.687-708
    • /
    • 2017
  • The machine-to-machine (M2M) communication is featured by tremendous number of devices, small data transmission, and large uplink to downlink traffic ratio. The massive access requests generated by M2M devices would result in the current medium access control (MAC) protocol in LTE/LTE-A networks suffering from physical random access channel (PRACH) overload, high signaling overhead, and resource underutilization. As such, fairness should be carefully considered when M2M traffic coexists with human-to-human (H2H) traffic. To tackle these problems, we propose an adaptive Slotted ALOHA (S-ALOHA) and time division multiple access (TDMA) hybrid protocol. In particular, the proposed hybrid protocol divides the reserved uplink resource blocks (RBs) in a transmission cycle into the S-ALOHA part for M2M traffic with small-size packets and the TDMA part for H2H traffic with large-size packets. Adaptive resource allocation and access class barring (ACB) are exploited and optimized to maximize the channel utility with fairness constraint. Moreover, an upper performance bound for the proposed hybrid protocol is provided by performing the system equilibrium analysis. Simulation results demonstrate that, compared with pure S-ALOHA and pure TDMA protocol under a target fairness constraint of 0.9, our proposed hybrid protocol can improve the capacity by at least 9.44% when ${\lambda}_1:{\lambda}_2=1:1$and by at least 20.53% when ${\lambda}_1:{\lambda}_2=10:1$, where ${\lambda}_1,{\lambda}_2$ are traffic arrival rates of M2M and H2H traffic, respectively.

Precise-Optimal Frame Length Based Collision Reduction Schemes for Frame Slotted Aloha RFID Systems

  • Dhakal, Sunil;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.165-182
    • /
    • 2014
  • An RFID systems employ efficient Anti-Collision Algorithms (ACAs) to enhance the performance in various applications. The EPC-Global G2 RFID system utilizes Frame Slotted Aloha (FSA) as its ACA. One of the common approaches used to maximize the system performance (tag identification efficiency) of FSA-based RFID systems involves finding the optimal value of the frame length relative to the contending population size of the RFID tags. Several analytical models for finding the optimal frame length have been developed; however, they are not perfectly optimized because they lack precise characterization for the timing details of the underlying ACA. In this paper, we investigate this promising direction by precisely characterizing the timing details of the EPC-Global G2 protocol and use it to derive a precise-optimal frame length model. The main objective of the model is to determine the optimal frame length value for the estimated number of tags that maximizes the performance of an RFID system. However, because precise estimation of the contending tags is difficult, we utilize a parametric-heuristic approach to maximize the system performance and propose two simple schemes based on the obtained optimal frame length-namely, Improved Dynamic-Frame Slotted Aloha (ID-FSA) and Exponential Random Partitioning-Frame Slotted Aloha (ERP-FSA). The ID-FSA scheme is based on the tag set estimation and frame size update mechanisms, whereas the ERP-FSA scheme adjusts the contending tag population in such a way that the applied frame size becomes optimal. The results of simulations conducted indicate that the ID-FSA scheme performs better than several well-known schemes in various conditions, while the ERP-FSA scheme performs well when the frame size is small.