• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.034 seconds

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.

Regression Analysis-based Model Equation Predicting the Concentration of Phytoncide (Monoterpenes) - Focusing on Suri Hill in Chuncheon - (피톤치드(모노테르펜) 농도 예측을 위한 회귀분석 기반 모델식 -춘천 수리봉을 중심으로-)

  • Lee, Seog-Jong;Kim, Byoung-Ug;Hong, Young-Kyun;Lee, Yeong-Seob;Go, Young-Hun;Yang, Seung-Pyo;Hyun, Geun-Woo;Yi, Geon-Ho;Kim, Jea-Chul;Kim, Dae-Yeoal
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.548-557
    • /
    • 2021
  • Background: Due to the emergence of new diseases such as COVID-19, an increasing number of people are struggling with stress and depression. Interest is growing in forest-based recreation for physical and mental relief. Objectives: A prediction model equation using meteorological factors and data was developed to predict the quantities of medicinal substances generated in forests (monoterpenes) in real-time. Methods: The concentration of phytoncide and meteorological factors in the forests near Chuncheon in South Korea were measured for nearly two years. Meteorological factors affecting the observation data were acquired through a multiple regression analysis. A model equation was developed by applying a linear regression equation with the main factors. Results: The linear regression analysis revealed a high explanatory power for the coefficients of determination of temperature and humidity in the coniferous forest (R2=0.7028 and R2=0.5859). With a temperature increase of 1℃, the phytoncide concentration increased by 31.7 ng/Sm3. A humidity increase of 1% led to an increase in the coniferous forest by 21.9 ng/Sm3. In the deciduous forest, the coefficients of determination of temperature and humidity had approximately 60% explanatory power (R2=0.6611 and R2=0.5893). A temperature increase of 1℃ led to an increase of approximately 9.6 ng/Sm3, and 1% humidity resulted in a change of approximately 6.9 ng/Sm3. A prediction model equation was suggested based on such meteorological factors and related equations that showed a 30% error with statistical verification. Conclusions: Follow-up research is required to reduce the prediction error. In addition, phytoncide data for each region can be acquired by applying actual regional phytoncide data and the prediction technique proposed in this study.

Analysis of the Contribution of Biomass Burning Emissions in East Asia to the PM10 and Radiation Energy Budget in Korea (동아시아의 생체연소 배출물에 대한 한국의 미세먼지 기여도 및 복사 에너지 수지 분석)

  • Lee, Ji-Hee;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.265-282
    • /
    • 2022
  • This study analyzes the impact of long-range transport of biomass burning emissions from northeastern China on the concentration of particulate matter of diameter less than 10 ㎛ (PM10) in Korea using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Korea was impacted by anthropogenic emissions from eastern China, dust storms from northern China and Mongolia, and biomass burning emissions from northeast China between April 4-and 7, 2020. The contributions of long-range PM10 transport were calculated by separating biomass burning emissions from mixed air pollutants with anthropogenic emissions and dust storms using the zeroing-out method. Further, the radiation energy budget over land and sea around the Korean Peninsula was analyzed according to the distribution of biomass burning emissions. Based on the WRF-Chem simulation during April 5-6, 2020, the contribution of long-range transport of biomass burning emissions was calculated as 60% of the daily PM10 average in Korea. The net heat flux around the Korean Peninsula was in a negative phase due to the influence of the large-scale biomass burning emissions. However, the contribution of biomass burning emissions was analyzed to be <45% during April 7-8, 2020, when the anthropogenic emissions from eastern China were added to biomass burning emissions, and PM10 concentration increased compared with the concentration recorded during April 5-6, 2020 in Korea. Furthermore, the net heat flux around the Korean Peninsula increased to a positive phase with the decreasing influence of biomass burning emissions.

Effect of Removal of Power Plant Emissions on the characteristics of Ozone Concentration Changes in Summer (화력발전소 배출량 제거에 따른 여름철 O3 농도의 변화 특성)

  • Kim, Dongjin;Jeon, Wonbae;Park, Jaehyeong;Mun, Jeonghyeok
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • In this study, the changes in ozone (O3) concentrations due to the removal of power plant emissions were analyzed using a community multi-scale air quality (CMAQ) model. Two different CMAQ model simulations, one considering the emissions from the Hadong power plant and one without considering the emissions, were conducted to investigate the effect of the emissions on the changes in the O3 concentrations in the surrounding areas. Subsequently, the CMAQ simulations exhibited an increase in the O3 concentration (25.24%) despite a decrease in the NOx (-18.87%) and volatile organic carbon (VOC, -11.27%) concentrations, which are major O3 precursors. The changes in the NO and O3 concentrations due to the removal of power plant emissions presented a strong negative correlation (r= -0.72). This indicated that the increase in the O3 concentration was mainly attributed to the significantly decreased NO concentration, thus, mitigating the O3 titration reaction (NO+O3→NO2+O2). Additionally, due to the VOC-limited (i.e., NOx-saturated) conditions in the study region, NO affected the O3 concentration, indicating that the O3 concentrations in a particular region are not only proportional to the increase or decrease in emissions. Therefore, an in-depth understanding of the chemical O3 production and loss in a particular region is necessary to accurately evaluate the effect of emission control on the changes in the O3 concentration.

Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model (미세먼지 유발 폐기능 손상 동물모델에서 RML의 호흡기 보호 효과)

  • Kim, Soo Hyun;Kim, Min Ju;Shin, Mi-Rae;Roh, Seong-Soo;Kim, Seung Hyung;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • Objective : This study is aimed to evaluate the protective effects of Rehmanniae Radix, Mori Folium, and Liriopie Tuber mixture (RML) on lung injury of Particulate matter less than 10 um in diameter and diesel exhaust particles (PM10D) mice model. Methods : To investigate the anti-inflammatory activity of RML, PM10D was diluted in aluminum hydroxide (Alum) in 7-week-old male mice and induced by Intra-Nazal-Tracheal (INT) injection method. Animal experiments were divided into 5 groups. Nor (normal mice), CTL (PM10D-induced mice with the administration of distilled water), DEXA (PM10D-induced mice with the administration of 3 mg/kg Dexamethasone), RML 100 (PM10D-induced mice treated with RML 100 mg/kg weight), and RML 200 (PM10D-induced mice treated with RML 200 mg/kg body weight). After 11 days administration, mice were sacrificed and inflammation-related immune cells in broncho-alveolar lavage fluid (BALF) were analyzed. Inflammation-related biomarkers were also analyzed in blood and lungs. Lung tissue was observed through histological examination. Results : In the PM10D induced model, the PML showed decreases in CXCL-1 and IL-17A in BALF. Expression of inflammatory cytokines and cough-related mRNA genes was significantly decreased in serum and lung tissue. The mixture treatment of RML significantly improved the immune related cells in the serum. In addition, histological observations showed a tendency to decrease the severity of lung injury. Conclusions : Overall, these results confirmed the respiratory protective effect of the RML mixture in a model of lung injury induced by air pollution (PM10+DEP), suggesting that it is a potential treatment for respiratory damage.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

The Study on Development on LUAV Software based on DO-178 (DO-178 기반 무인비행장치 소프트웨어 개발 방안에 대한 고찰)

  • Ji-hun Kwon;Dong-min Lee;Kyung-min Park;Ye-won Na;Ye-ju Kim;Gi-moung Lee;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.382-390
    • /
    • 2023
  • The Korea market for LUAV (Light Unmanned Aerial Vehicle) weighing less than 150 kg is growing rapidly. As a result, the market for manufacturing and operating LUAV is expanding, and domestic development of parts and finished products is actively taking place. However, the flight control system and onboard software, which are key components of domestic LUAV, are largely dependent on overseas products due to the excessive cost and period required for development. This paper presented a domestic software development and certification procedure using DO-178C, a guideline for aircraft software development, and the Model-based Development method, and conducted a survey of those involved in the development, manufacturing, and certification of LUAV and analyzed the results. In addition, a case study was conducted to apply the software development plan to the helicopter FCC (Flight Control Computer).

Biomechanical Research Trends for Alpine Ski Analysis (알파인 스키 분석을 위한 운동역학 연구 동향)

  • Lee, Jusung;Moon, Jeheon;Kim, Jinhae;Hwang, Jinny;Kim, Hyeyoung
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.6
    • /
    • pp.293-308
    • /
    • 2018
  • This study was carried out to investigate the current trends in skiing-related research from existing literature in the field of kinematics, measurement sensor and computer simulation. In the field of kinematics, research is being conducted on the mechanism of ski turn, posture analysis according to the grade and skill level of skiers, friction force of ski and snow, and air resistance. In the field of measurement sensor and computer simulation, researches are being conducted for researching and developing equipment using IMU sensor and GPS. The results of this study are as follows. First, beyond the limits of the existing kinematic analysis, it is necessary to develop measurement equipment that can analyze the entire skiing area and can be deployed with ease at the sports scene. Second, research on the accuracy of information obtained using measurement sensors and various analysis techniques based on these measures should be carried out continuously to provide data that can help the sports scene. Third, it is necessary to use computer simulation methods to clarify the injury mechanism and discover ways to prevent injuries related to skiing. Fourth, it is necessary to provide optimized ski trajectory algorithm by developing 3D ski model using computer simulation and comparing with actual skiing data.

Forest Fire Risk Analysis Using a Grid System Based on Cases of Wildfire Damage in the East Coast of Korean Peninsula (동해안 산불피해 사례기반 격자체계를 활용한 산불위험분석)

  • Kuyoon Kim ;Miran Lee;Chang Jae Kwak;Jihye Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.785-798
    • /
    • 2023
  • Recently, forest fires have become frequent due to climate change, and the size of forest fires is also increasing. Forest fires in Korea continue to cause more than 100 ha of forest fire damage every year. It was found that 90% of the large-scale wildfires that occurred in Gangwon-do over the past five years were concentrated in the east coast area. The east coast area has a climate vulnerable to forest fires such as dry air and intermediate wind, and forest conditions of coniferous forests. In this regard, studies related to various forest fire analysis, such as predicting the risk of forest fires and calculating the risk of forest fires, are being promoted. There are many studies related to risk analysis for forest areas in consideration of weather and forest-related factors, but studies that have conducted risk analysis for forest-friendly areas are still insufficient. Management of forest adjacent areas is important for the protection of human life and property. Forest-adjacent houses and facilities are greatly threatened by forest fires. Therefore, in this study, a grid-based forest fire-related disaster risk map was created using factors affected by forest-neighboring areas using national branch numbers, and differences in risk ratings were compared for forest areas and areas adjacent to forests based on Gangneung forest fire cases.

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.