Browse > Article
http://dx.doi.org/10.5467/JKESS.2022.43.2.265

Analysis of the Contribution of Biomass Burning Emissions in East Asia to the PM10 and Radiation Energy Budget in Korea  

Lee, Ji-Hee (Department of Earth Science Education, Korean National University of Education)
Cho, Jae-Hee (Natural Science Institute, Korean National University of Education)
Kim, Hak-Sung (Department of Earth Science Education, Korean National University of Education)
Publication Information
Journal of the Korean earth science society / v.43, no.2, 2022 , pp. 265-282 More about this Journal
Abstract
This study analyzes the impact of long-range transport of biomass burning emissions from northeastern China on the concentration of particulate matter of diameter less than 10 ㎛ (PM10) in Korea using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Korea was impacted by anthropogenic emissions from eastern China, dust storms from northern China and Mongolia, and biomass burning emissions from northeast China between April 4-and 7, 2020. The contributions of long-range PM10 transport were calculated by separating biomass burning emissions from mixed air pollutants with anthropogenic emissions and dust storms using the zeroing-out method. Further, the radiation energy budget over land and sea around the Korean Peninsula was analyzed according to the distribution of biomass burning emissions. Based on the WRF-Chem simulation during April 5-6, 2020, the contribution of long-range transport of biomass burning emissions was calculated as 60% of the daily PM10 average in Korea. The net heat flux around the Korean Peninsula was in a negative phase due to the influence of the large-scale biomass burning emissions. However, the contribution of biomass burning emissions was analyzed to be <45% during April 7-8, 2020, when the anthropogenic emissions from eastern China were added to biomass burning emissions, and PM10 concentration increased compared with the concentration recorded during April 5-6, 2020 in Korea. Furthermore, the net heat flux around the Korean Peninsula increased to a positive phase with the decreasing influence of biomass burning emissions.
Keywords
East Asia; biomass burning; long-range transport; $PM_{10}$; radiation energy budget;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, X., Zhao, X., Ji, G., Ying, R., Shan, Y., and Lin, Y., 2019, Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China. Journal of Atmospheric Chemistry, 76, 73-88, doi:10.1007/s10874-019-09388-z.   DOI
2 Zhang, M.H., Cess, R.D., and Xie, S.C., 1996, Relationships between sea surface temperatures and cloud-radiative-forcings over the entire tropical oceans. Journal of Climate, 9, 1374-1384, http://www.jstor.org/stable/26201324.   DOI
3 Yang, G., Zhao, H., Tong, D.Q., Xiu, A., Zhang, X., and Gao, C., 2020, Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Science of the Total Environment, 716, 136517, doi:10.1016/j.scitotenv.2020.136517.   DOI
4 Yin, S., 2020, Biomass burning spatiotemporal variations over South and Southeast Asia. Environment International, 145, 106153, doi: 10.1016/j.envint.2020.106153.   DOI
5 Laprise, R., 1992, The Euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120, 197-207, doi:0.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.   DOI
6 Kim, H.C., Kim, E., Bae, C., Cho, J.H., Kim, B.U., and Kim, S., 2017a, Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory. Atmospheric Chemistry and Physics, 17, 10315-10332, doi:10.5194/acp-17-10315-2017.   DOI
7 Morrison, H., McCoy, R.B., Klein, S.A., Xie, S., Luo, Y., Avramov, A., Chen, M., Cole, J.N.S., Falk, M., Foster, M.J., del Genio, A.D., Harrington, J.Y., Hoose, c., Khairoutdinov, M.F., Larson, V.E., Liu, X., McFarquhar, G.M., Poellot, M.R., von Salzen, K., Shipway, B.J., Shupe, M.D., Sud, Y.C., Turner, D.D., Veron, D.E., Walker, G.K., Wang, Z., Wolf, A.B., Xu, K.M., Yang, F., and Zhang, G., 2009, Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase arctic cloud experiment, ?: Multilayer cloud. Quarterly Journal of the Royal Meteorological Society, 135, 1003-1019, doi:10.1002/qj.415.   DOI
8 Kato, S., Rose, F.G., Rutan, D.A., Thorsen, T.J., Loeb, N.G., Doelling, D.R., Huang, X., Smith, W.L., Su, W., and Ham, S.H., 2018, Surface irradiances of edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. Journal of Climate, 31, 4501-4527, doi:10.1175/JCLI-D-17-0523.1.   DOI
9 Lavoue, D., Liousse, C., Cachier, H., Stocks, B.J., and Goldmmer, J.G., 2000, Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latiudes. Journal of Geophysical Research: Atmospheres, 105, 26871-26890, doi:10.1029/2000JD900180.   DOI
10 McClure, C.D. and Jaffe, D.A., 2018, US particulate matter air quality improves except in wildfire-prone areas. Earth, Atmospheric, and Planetary Sciences, 115, 7901-7906, doi: 10.1073/pnas.1804353115.   DOI
11 Dong, X., Fu, J.S., Huang, K., Lin, N.H., Wang, S.H., and Yang, C.E., 2018, Analysis of the co-existence of long-range transport biomass burning and dust in the subtropical west Pacific region. Scientific Reports, 8, 8962, doi:10.1038/s41598-018-27129-2.   DOI
12 Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., and Kloster, S., 2010, Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43-67, doi:10.5194/gmd-3-43-2010.   DOI
13 Yu, J., Che, H., Chen, Q., Xia, X., Zhao, H., Wang, H., Wang, Y., Zhang, X., and Shi, G., 2015, Investigation of aerosol optical depth (AOD) and Angstrom Exponent over the desert region of Northwestern China based on measurements from the China Aerosol Remote Sensing Network (CARSNET). Aerosol and Air Quality Research, 15, 2024-2036, doi:10.4209/aaqr.2014.12.0326.   DOI
14 Lee, S., Hong, J., Cho, Y., Choi, M., Kim, J., Park, S.S., Ahn, J.Y., Kim, S.K., Moon, K.J., Eck, T.F., Holben, B.N. and Koo, J.H., 2018, Characteristics of classified aerosol types in South Korea during the MAPS-Seoul campaign. Aerosol and Air Quality Research, 18, 2195-2206, doi:10.4209/aaqr.2017.11.0474.   DOI
15 Lee, S., Kim, M., Kim, S.Y., Lee, D.W., Lee, H., Kim, J., Le, S., and Liu, Y.. 2021, Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations. Environmental Pollution, 269, 115924, doi: 10.1016/j.envpol.2020.115924.   DOI
16 Jee, J.B., Lee, K.T., Lee, K.H., and Zo, I.S., 2020, Development of GK-2A AMI aerosol detection algorithm in the East-Asia region using Himawari-8 AHI Data. Asia-Pacific Journal of Atmospheric Sciences, 56, 207-223, doi:10.1007/s13143-019-00156-3.   DOI
17 Adams, M.A. and Shen, Z.H., 2015, Introduction to the characteristics, impacts and management of forest fire in China. Forest Ecology and Management, 356, 1, doi:10.1016/j.foreco.2015.09.019.   DOI
18 Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.L., Koren, V., Duan, Q.Y., Ek, M., and Betts, A., 1996, Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research, 101, 7251-7268, doi:10.1029/95jd02165.   DOI
19 Cho, J.H., Kim H.S., and Yoon, M.B., 2022, The influence of atmospheric blocking on regional PM10 aerosol transport to South Korea during February-March of 2019. Atmospheric Environment, 277, 119056, doi:10.1016/j.atmosenv.2022.119056.   DOI
20 Colarco, P.R., Schoeberl, M.R., Doddridge, B.G., Marufu, L.T., Torres, O., and Welton, E.J., 2004, Transport of smoke from Canadian forest fires to the surface near Washinton, D.C.: Injection height, entrainment, and optical properties. Journal of Geophysical Research: Atmospheres, 109, D06203, doi:10.1029/2003JD004248.   DOI
21 Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., 2012, The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492, doi:10.5194/gmd-5-1471-2012.   DOI
22 Hong, S.Y., Noh, Y., and Dudhia, J., 2006, A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318-2341, doi:10.1175/MWR3199.1.   DOI
23 Huang, M., Huang, B., and Huang, H.L.A., 2017, Acceleration of the WRF Monin-Obukhov-Janjic Surface Layer Parameterizaion Scheme on an MIC-Based Platform for Weather Forecast. IIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 10, doi:10.1109/JSTARS.2017.2725743.   DOI
24 Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., and Collins, W.D., 2008, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Jornal of Geophysical Research, 113, D13, doi:10.1029/2008JD009944.   DOI
25 Heald, C.L., Ridley, D.A., Kroll, J.H., Barrett, S.R.H., Cady-Pereira, K.E., Alvarado, M.J., and Holmes, C.D., 2014, Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics, 14, 5513-5527, doi:10.5194/acp-14-5513-2014.   DOI
26 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmuller, R., Denier van der Gon, H., Kuenen, J.J.P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M., 2015, HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 15, 11411-11432, doi:10.5194/acp-15-11411-2015.   DOI
27 Kim, C., Park, S., Kim, Y., Chang, L., Song, S., Moon, Y., and Song, C., 2012, A numerical study on indicators of long-range transport potential for anthropogenic particulate matters over northeast Asia. Atmospheric environment, 58, 35-44, doi:10.1016/j.atmosenv.2011.11.002.   DOI
28 Kim, H.S., Chung, Y.S., and Cho, J.H., 2017b, Long-term variations of dust storms and associated dustfall and related climate factors in Korea during 1997-2016. Air Quality, Atmosphere and Health, 50, 191-200, doi:10.1007/s11869-017-0513-9.   DOI
29 Che, H., Wang, Y., Sun, J., Zhang, X., Zhang, X., and Guo, J., 2013, Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol and Air Quality Research, 13, 777-785, doi:10.4209/aaqr.2012.07.0200.   DOI
30 Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y.F., Pereira, G., Ding, A., Huang, X., and Dumka, U.C., 2017, A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000-1034, doi:10.1016/j.scitotenv.2016.11.025.   DOI
31 Lin, C.Y., Zhao, C., Liu, X., Lin, N.H., and Chen, W.N., 2014, Modeling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology, 66, 23733, doi: 10.3402/tellusb.v66.23733.   DOI
32 Cho, J.H., Kim, H.S., and Chung, Y.S., 2021, Spatio-temporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Quality, Atmosphere and Health, 14, 1001-1016, doi:10.1007/s11869-021-00995-y.   DOI
33 LeGrand, S.L., Polashenski, C., Letcher, T.W., Creighton, G.A., Peckham, S.E., and Cetola, J.D., 2019, The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geoscientific Model Development, 12, 131-166, doi:10.5194/gmd-12-131-2019.   DOI
34 Li, J., Wang, Z., Luo, G., Luo, G., Sun, Y., and Wang, Y., 2012, Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-dust storm in March 2010. Atmospheric Chemistry and Physics, 12, 7591-7607, doi:10.5194/acp12-7591-2012, 2012.   DOI
35 Lyu, Y.L., Liu, L.Y., Guo, L.L., Yang, Y.Y., Qu, Z.Q., Hu, X., and Zhang, G.M., 2017, Deposited atmospheric dust as influenced by anthropogenic emissions in northern China. Environmental Monitoring and Assessment, 189, 390, doi:10.1007/s10661-017-6093-1.   DOI
36 Knote, C., Hodzic, A., Jimenez, J.L., Volkamer, R., Orlando, J.J., Baidar, S., Brioude, J., Fast, J., Gentner, D.R., Goldstein, A.H., Hayes, P.L., Kinghton, W.B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q., 2014, Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. Atmospheric Chemistry and Physics, 14, 6213-6239, doi:10.5194/acp-14-6213-2014.   DOI
37 Ruijgrok, K., 1995, Dry deposition of acidifying and alkaline particles to forests: model and experimental results compared. Studies in Environmental Science, 64, 431-438, doi:10.1016/S0166-1116(06)80312-2.   DOI
38 Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H., Tang, Y., Kondragunta, S., Ruminski, M., Lu, S., Rogers, E., Saylor, R., Shafran, P., Huang, H., Gorline, J., Upadhayay, S., and Artz, R., 2017, NAQFC Developmental forecast guidance for fine particulate matter (PM2.5). Weather and Forecasting, 32, 343-360, doi:10.1175/WAF-D-15-0163.1.   DOI
39 Madronich, S., 1987, Photodissociation in the atmosphere1. Actinic flux and the effects of ground reflections and clouds. Journal of Geophysical Research, 92, 9740-9752, doi:10.1029/JD092iD08p09740.   DOI
40 Murillo, J.H., Roman, S.R., Marin, J.F., Ramos, A.C., Jimenez, S.B., Gonzalez, B.C., and Baumgardner, D., 2013, Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4, 181-190, doi:10.5094/APR.2013.018.   DOI
41 Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J., Orlando, J.J., Soja, A.J., 2011, The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4, 625-641, doi:10.5194/gmd-4-625-2011.   DOI
42 Stieger, B., Spindler, G., Fahlbusch, B., Muller, K., Gruner, A., Poulain, L., Thoni, L., Seitler, E., Wallasch, M., and Herrmann, H., 2018, Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany - A five-year study. Journal of Atmospheric Chemistry, 75, 33-70, doi:10.1007/s10874-017-9361-0.   DOI
43 Zheng, Y., Kang, B., Zhang, D., Zhao, C., Liu, C., Shu, Z., Sun, Y., Huang, B., Chai, R., Zhao, T., Zhang, X., Che, H., Xia, X., Wang, Y., Zhao, H., Wang, H., Estelles, V., An, L., Gui, K., and Sun, T., 2018, A comparative analysis of aerosol microphysical, optical and radiative properties during the Spring Festival holiday over Beijing and surrounding regions. Aerosol and Air Quality Research, 18, 1774-1787, doi:10.4209/aaqr.2017.10.0396.   DOI
44 Xie, Y., Li, Z., Li, D., Xu, H., and Li, K., 2015, Aerosol optical and microphysical properties of four typical sites of SONET in China based on remote sensing measurements. Remote Sensing, 7, 9928-9953, doi:10.3390/rs70809928.   DOI
45 Saidou Chaibou, A.A., Ma, X., and Sha, T., 2020, Dust radiative forcing and its impact on surface energy budget over West Africa. Scientific Reports, 10, 12236, doi:10.1038/s41598-020-69223-4.   DOI
46 Pun, V.C., Yu, I.T., Qiu, H., Ho, K.F., Sun, Z., Louie, P.K., Wong, T.W., and Tian, L., 2014, Short-term associations of cause-specific emergency hospitalizations and particulate matter chemical components in Hong Kong. American Journal of Epidemiology, 179, 1086-95, doi:10.1093/aje/kwu026.   DOI
47 Remer, L.A., Kaufman, Y.J., Tanre, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and Holben, B.N., 2005, The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62, 947-973, doi:doi.org/10.1175/JAS3385.1.   DOI
48 Wotawa, G. and Trainer, M., 2000, The influence of Canadian forest fires on pollutant concentrations in the United States. Science, 288, 324-328, doi:10.1126/science.288.5464.324.   DOI
49 Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Qin, S., Liu, X., Yan, Q., Zheng, H., Zheng, M., Yan, Y., Liu, D., Ding, S., Zhao, D., Shen, G., Zhao, T., and Qi, S., 2020, The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. Environment International, 142, 105812, doi:10.1016/j.envint.2020.105812.   DOI
50 Dao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L., and Wang, C., 2014, Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the north China plain. PLoS ONE, 9, e113831, doi:10.1371/journal.pone.0113831.   DOI
51 Grell, G.A. and Freitas, S.R., 2013, A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14, 5233-5250, doi:10.5194/acp-14-5233-2014.   DOI
52 Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P., and Morisette, J.T., 2002, An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83, 3-15, doi:10.1016/S0034-4257(02)00084-6.   DOI