• Title/Summary/Keyword: AI Mathematics

Search Result 111, Processing Time 0.022 seconds

A comparative study of the revised 2022 Korea mathematics curriculum and the international baccalaureate diploma program mathematics: Applications and interpretation standard level - focusing on high school statistics area

  • Soo Bin Lee;Ah Ra Cho;Oh Nam Kwon
    • Research in Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.49-73
    • /
    • 2024
  • This study aims to explore the direction of high school statistics education in Korea through a comparative analysis between the revised 2022 Korea mathematics curriculum and the IBDP Mathematics: Application & Interpretation Standard Level (IBDP AI SL) Curriculum and textbooks. The study seeks to investigate the Statistics unit of the two curricula, compare chapter structures and content elements of textbooks, and explore exercises on modeling and utilization of technology tools. The results are as follows: First, the IBDP AI SL statistics covered a broader range of topics. Second, exercises in Korean high school textbooks typically inquire about one or two questions in each topic, whereas the IBDP AI SL textbook's exercises present a real-life scenario on all relevant topics through sub-questions. Third, the Korean textbook guides the utilization of technology tools only in exercises presented after completing the entire chapter or where the calculation is complex. Also, there were only a handful of modeling exercises in the Korean textbook in contrast to most of the lessons and exercises were modeling exercises in the IBDP AI SL textbook. If these findings can be integrated into teaching practices in Korea, it will provide a direction for statistics education in Korean high schools.

Secondary Mathematics Teachers' Perceptions on Artificial Intelligence (AI) for Math and Math for Artificial Intelligence (AI) (도구로서 인공지능과 교과로서 인공지능에 대한 중등 수학 교사의 인식 탐색)

  • Sim, Yeonghoon;Kim, Jihyun;Kwon, Minsung
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.159-181
    • /
    • 2023
  • The purpose of this study is to explore secondary mathematics teachers' perceptions on Artificial Intelligence (AI). For this purpose, we conducted three focus group interviews with 18 secondary in-service mathematics teachers and analyzed their perceptions on AI for math and math for AI. The secondary in-service mathematics teachers perceive that AI allows to implement different types of mathematics instruction but has limitations in exploring students' mathematical thinking and having emotional interactions with students. They also perceive that AI makes it easy to develop assessment items for teachers but teachers' interventions are needed for grading essay-type assessment items. Lastly, the secondary in-service mathematics teachers agree the rationale of adopting the subject <Artificial Intelligence Mathematics> and its needs for students, but they perceive that they are not well prepared yet to teach the subject and do not have sufficient resources for teaching the subject and assessing students' understanding about the subject. The findings provide implications and insights for developing individualized AI learning tools for students in the secondary level, providing AI assessment tools for teachers, and offering professional development programs for teachers to increase their understanding about the subject.

Examining Development of Collaborative Artificial Intelligence in the Context of Classroom Instruction (수업활동 기반 협력적 인공지능 수학교사 개발에 대한 고찰)

  • Kim, Mi Ryung;Jung, Kyoung Young;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.35 no.4
    • /
    • pp.509-528
    • /
    • 2019
  • As various changes in education in general and learning environment in particular have promoted different needs and expectations for learning at both personal and social levels, the roles that schools and school teachers typically have with respect to their students are being challenged. Especially with the recent, rapid progress of the artificial intelligence(AI) field, AI could serve beyond the way in which it has been used. Based on a review of some of the related literature and the current development of AI, a view on utilizing AI to be a collaborative, complementary partner with an human mathematics teacher in the classroom in order to support both students and teachers will be discussed.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.

An analysis of discursive constructs of AI-based mathematical objects used in the optimization content of AI mathematics textbooks (인공지능 수학교과서의 최적화 내용에서 사용하는 인공지능 기반 수학적 대상들에 대한 담론적 구성 분석)

  • Young-Seok Oh;Dong-Joong Kim
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.319-334
    • /
    • 2024
  • The purpose of this study was to reveal the discursive constructs of AI-based mathematical objects by analyzing how concrete objects used in the optimization content of AI mathematics textbooks are transformed into discursive objects through naming and discursive operation. For this purpose, we extracted concrete objects used in the optimization contents of five high school AI mathematics textbooks and developed a framework for analyzing the discursive constructs and discursive operations of AI-based mathematical objects that can analyze discursive objects. The results of the study showed that there are a total of 15 concrete objects used in the loss function and gradient descent sections of the optimization content, and one concrete object that emerges as an abstract d-object through naming and discursive operation. The findings of this study are not only significant in that they flesh out the discursive construction of AI-based mathematical objects in terms of the written curriculum and provide practical suggestions for students to develop AI-based mathematical discourse in an exploratory way, but also provide implications for the development of effective discursive construction processes and curricula for AI-based mathematical objects.

Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced (생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로)

  • Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.549-571
    • /
    • 2024
  • As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.

A case study of elementary school mathematics-integrated classes based on AI Big Ideas for fostering AI thinking (인공지능 사고 함양을 위한 인공지능 빅 아이디어 기반 초등학교 수학 융합 수업 사례연구)

  • Chohee Kim;Hyewon Chang
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.255-272
    • /
    • 2024
  • This study aims to design mathematics-integrated classes that cultivate artificial intelligence (AI) thinking and to analyze students' AI thinking within these classes. To do this, four classes were designed through the integration of the AI4K12 Initiative's AI Big Ideas with the 2015 revised elementary mathematics curriculum. Implementation of three classes took place with 5th and 6th grade elementary school students. Leveraging the computational thinking taxonomy and the AI thinking components, a comprehensive framework for analyzing of AI thinking was established. Using this framework, analysis of students' AI thinking during these classes was conducted based on classroom discourse and supplementary worksheets. The results of the analysis were peer-reviewed by two researchers. The research findings affirm the potential of mathematics-integrated classes in nurturing students' AI thinking and underscore the viability of AI education for elementary school students. The classes, based on AI Big Ideas, facilitated elementary students' understanding of AI concepts and principles, enhanced their grasp of mathematical content elements, and reinforced mathematical process aspects. Furthermore, through activities that maintain structural consistency with previous problem-solving methods while applying them to new problems, the potential for the transfer of AI thinking was evidenced.

ON APPROXIMATIONS TO FLOQUET SYSTEMS

  • Zaghrout, A.A.S.;Ragab, A.A.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.55-60
    • /
    • 1987
  • A linear system $\dot{x}= A(t)x$, with A(t+w)=A(t) is considered. A step function approximation of a periodic matrix is constructed. The stability criteria is discussed.

  • PDF

A study on the didactical application of ChatGPT for mathematical word problem solving (수학 문장제 해결과 관련한 ChatGPT의 교수학적 활용 방안 모색)

  • Kang, Yunji
    • Communications of Mathematical Education
    • /
    • v.38 no.1
    • /
    • pp.49-67
    • /
    • 2024
  • Recent interest in the diverse applications of artificial intelligence (AI) language models has highlighted the need to explore didactical uses in mathematics education. AI language models, capable of natural language processing, show promise in solving mathematical word problems. This study tested the capability of ChatGPT, an AI language model, to solve word problems from elementary school textbooks, and analyzed both the solutions and errors made. The results showed that the AI language model achieved an accuracy rate of 81.08%, with errors in problem comprehension, equation formulation, and calculation. Based on this analysis of solution processes and error types, the study suggests implications for the didactical application of AI language models in education.