• Title/Summary/Keyword: AI Curriculum

Search Result 183, Processing Time 0.031 seconds

Analysis of the Meaning of the 2022 Revised Curriculum (2022 개정 교육과정 의미 분석)

  • Han, Yoon Ok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.59-69
    • /
    • 2022
  • The purpose of this study is to suggest improvement directions by analyzing the meaning of the 2022 revised curriculum. Research methods include literature research, surveys, and interviews. The conclusion is as follows. First, The background of the promotion has been revised to cultivate the competencies necessary for the future society and to strengthen the learner-tailored education. Second, what characterizes the 2022 revised curriculum is that it is being created in collaboration with people as a future-oriented curriculum for the first time in history. Third, the implementation of the 2022 revised curriculum is being directed towards individuality and diversity, decentralization and autonomy, digitally based education, and public performance and accountability. Fourth, the principal contents are curriculum innovation in response to future changes, cultivating community values and capacity building for learners, strengthening education for elementary, middle, and high school students to develop digital and AI literacy, and strengthening the curriculum for all.

The Necessity of an Elementary School Information Curriculum based on the Analysis of Overseas SW and AI Education (해외 SW·AI 교육 현황 분석을 통한 초등학교 정보 교과의 필요성)

  • Song, Ui-Sung;Rim, Hwa-Kyung
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.301-308
    • /
    • 2021
  • In line with the social changes due to the Fourth Industrial Revolution, foreign countries are strengthening information education for the future of education. This study analyzed the current status of software (SW) and artificial intelligence (AI) education among different types of information education programs in elementary schools of major foreign countries, and compared them with the education provided in Korea. Compared to major foreign countries, Korea allocated very little time for software education in elementary schools, making it difficult to sufficiently cover all areas of the curriculum achievement standards. In addition, other countries recognized the importance of artificial intelligence, an important technology of the Fourth Industrial Revolution, and were providing artificial intelligence education on the basis of software education at the national level. The Korean government is also planning on providing the education at national level, but it was identified that the information education of elementary schools have many problematic issues. This study emphasized the need to establish an information curriculum for elementary schools as a way to address these issues.

Development of Artificial Intelligence Education Content to Classify Emotion of Sentences for Elementary School (초등학생을 위한 문장의 정서 분류 인공지능 교육 콘텐츠 개발 및 적용)

  • Shim, Jaekwoun;Kwon, Daiyoung
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • In order to cultivate AI(artificial intelligence) manpower, major countries are making efforts to apply AI education from elementary school. In order to introduce AI education in elementary school, it is necessary to have a curriculum and educational content for elementary school level. This study developed educational contents to experience the principle of AI learning at the unplugged level for the purpose of AI education for elementary school students. The educational content developed was selected as an AI that evaluates the emotion of sentences. In addition, to solve the problem, data attributes were derived and collected, and the process of AI learning was simulated to solve the problem. As a result of the study, the attitude of elementary school students to AI increased post than before. In addition, the task performance rate was averaged at 85%, showing that the proposed AI education content has educational significance.

A Study on the Understanding and Solving Tasks of AI Convergence Education (AI 융합교육의 이해와 해결 과제에 대한 고찰)

  • Sook-Young Choi
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.147-157
    • /
    • 2023
  • In this study, we approached from the perspective of AI convergence education in elementary, middle and high schools to understand AI convergence education. We examined what capabilities AI convergence education ultimately seeks to pursue, and analyzed various examples of AI convergence education in three dimensions: core curriculum, convergence model, AI learning elements and learning activities. In addition, factors to be considered in order for AI convergence education to be actively carried out include the cultivation of AI convergence education capabilities of teachers, the development and dissemination of AI teaching and learning methods and teaching and learning models, and evaluation methods for AI convergence education.

A Curriculum Study to Strengthen AI and Data Science Job Competency (AI·데이터 사이언스 분야 직무 역량 강화를 위한 커리큘럼 연구)

  • Kim, Hyo-Jung;Kim, Hee-Woong
    • Informatization Policy
    • /
    • v.28 no.2
    • /
    • pp.34-56
    • /
    • 2021
  • According to the Fourth Industrial Revolution, demand for and interest in jobs in the field of AI and data science - such as artificial intelligence/data analysts - are increasing. In order to keep pace with this trend, and to supply human resources that can effectively perform such jobs in the relevant fields in a timely manner, job seekers must develop the competencies required by the companies, and universities must be in charge of training. However, it is difficult to devise appropriate response strategies at the level of job seekers, companies and universities, which are stakeholders in terms of supplying suitably competent personnel. Therefore, the purpose of this study is to determine which competencies are required in practice in order to cultivate and supply human talents equipped with the necessary job competencies, and to propose plans for the development of the required competencies at the university level. In order to identify the required competencies in the field of AI and data science, data on job postings on the LinkedIn site, the recruitment platform, were analyzed using text mining techniques. Then, research was conducted with the aim of devising and proposing concrete plans for competency development at the university level by comparing and verifying the results of the international graduate school curriculum in the field of AI and data science, and the interview results with the hiring managers, respectively, with the results of the topic model.

Proposal of Artificial Intelligence Convergence Curriculum for Upskilling of Financial Manpower : Focusing on Private Bankers and Robo-Advisors

  • KIM, JiWon;WOO, HoSung
    • Fourth Industrial Review
    • /
    • v.2 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • Purpose - As new technologies that have led the 4th industrial revolution spread after the COVID-19 pandemic, the business crisis of existing financial institutions and the threat of employee jobs are growing, especially in the financial sector. The purpose of this study is to propose a human-technology convergence curriculum for creating high value-added in financial institutions and upskilling financial manpower. Research design, data, and methodology - In this study, a curriculum was designed to strengthen job competency for Private Bankers, high-quality employees of a bank dealing with high-net-worth owners. The focus of the design is that learners acquire skills to use robo-advisors as a tool and supplement artificial intelligence ethics. Result - The curriculum is organized into a total of 16 classes, and the main contents are changes in the financial environment and financial consumers, the core technology of robo-advisors and AI ethics, and establishment and evaluation of hyper-personalized asset management strategies using robo-advisors. To achieve the educational goal, two evaluations are performed to derive individual tasks and team project results. Conclusion - Human-centered upskilling convergence education will contribute to improving employee value and expanding corporate high value-added business areas by utilizing new technologies as tools. It is expected that the development and application of convergence curriculum in various fields will continue to be advanced in the future.

Development of an Artificial Intelligence Integrated Korean Language Education Program

  • Dae-Sun Kim;Eun-Hee Goo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • Amidst the onset of the Fourth Industrial Revolution and the prominence of artificial intelligence, societal structures are undergoing significant changes. There is a heightened global interest in AI education for nurturing future talents. Consequently, this research aims to develop an AI-integrated Korean language curriculum for first-year high school students, utilizing the ADDIE model for instructional program development. To assess the program's effectiveness, pre-post assessments were conducted on future core competencies (Collaboration, Communication, Critical Thinking, Creativity) and knowledge information processing skills. The curriculum, spanning nine sessions and incorporating four small projects, sought to provide students with a new experience of AI-integrated Korean language education. As a result, students who participated in the program demonstrated improvement in future core competencies across all areas, and positive outcomes were observed in satisfaction levels and qualitative analysis. Through these findings, it is suggested that this program successfully integrates artificial intelligence into high school Korean language education, potentially contributing to the cultivation of future talents among students.

An Analysis of Students' Experiences Using the Block Coding Platform KNIME in a Science-AI Convergence Class at a Science Core High School (과학중점학교 학생의 블록코딩 플랫폼 KNIME을 활용한 과학-AI 융합 수업 경험 분석)

  • Uijeong Hong;Eunhye Shin;Jinseop Jang;Seungchul Chae
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.141-153
    • /
    • 2024
  • The 2022 revised science curriculum aims to develop the ability to solve scientific problems arising in daily life and society based on convergent thinking stimulated through participation in research activities using artificial intelligence (AI). Therefore, we developed a science-AI convergence education program that combines the science curriculum with artificial intelligence and employed it in convergence classes for high school students. The aim of the science-AI convergence class was for students to qualitatively understand the movement of a damped pendulum and build an AI model to predict the position of the pendulum using the block coding platform KNIME. Individual in-depth interviews were conducted to understand and interpret the learners' experiences. Based on Giorgi's phenomenological research methodology, we described the learners' learning processes and changes, challenges and limitations of the class. The students collected data and built the AI model. They expected to be able to predict the surrounding phenomena based on their experimental results and perceived the convergence class positively. On the other hand, they still perceived an with the unfamiliarity of platform, difficulty in understanding the principle of AI, and limitations of the teaching method that they had to follow, as well as limitations of the course content. Based on this, we discussed the strengths and limitations of the science-AI convergence class and made suggestions for science-AI convergence education. This study is expected to provide implications for developing science-AI convergence curricula and implementing them in the field.

A Design-Based Research on Application of Artificial Intelligence(AI) Teaching-Learning Model in Elementary School

  • Kim, Wooyeol
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.201-208
    • /
    • 2021
  • Recently, artificial intelligence(AI) has been used throughout society, and social interest in it is increasing. Accordingly, the necessity of AI education is becoming a big topic in the education field. As a response to this trend, the Korean education authorities have also announced plans for AI education, and various studies have been performed in academic field to revitalize AI education in the future. However, the curriculum research on what differentiates AI education from existing SW education and what and how to train AI is still in its infancy. In this paper, Therefore, we focused on the experiences of elementary school students in solving problems in their own lives, and developed a teaching-learning model based on design-based research so that students can design a problem-solving process and experience the process of feedback. We applied the developed teaching-learning model to the problem-solving process and confirmed that it increased students' understanding and satisfaction with AI education.

A Study on the Definition of Data Literacy for Elementary and Secondary Artificial Intelligence Education (초·중등 인공지능 교육을 위한 데이터 리터러시 정의 연구)

  • Kim, SeulKi;Kim, Taeyoung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.59-67
    • /
    • 2021
  • The development of AI technology has brought about a big change in our lives. As AI's influence grows from life to society to the economy, the importance of education on AI and data is also growing. In particular, the OECD Education Research Report and various domestic information and curriculum studies address data literacy and present it as an essential competency. Looking at domestic and international studies, one can see that the definition of data literacy differs in its specific content and scope from researchers to researchers. Thus, the definition of major research related to data literacy was analyzed from various angles and derived from various angles. In key studies, Word2vec natural language processing methods, along with word frequency analysis used to define data literacy, are used to analyze semantic similarities and nominate them based on content elements of curriculum research to derive the definition of 'understanding and using data to process information'. Based on the definition of data literacy derived from this study, we hope that the contents will be revised and supplemented, and more research will be conducted to provide a good foundation for educational research that develops students' future capabilities.

  • PDF