• 제목/요약/키워드: AI 개발

검색결과 1,373건 처리시간 0.027초

충북지역 중학생의 식이섬유 섭취 실태 및 식품섭취빈도조사지 개발 (Dietary Fiber Intake of Middle School Students in Chungbuk Area and Development of Food Frequency Questionnaire)

  • 김영혜;강유주;이인선;김향숙
    • 한국식품영양과학회지
    • /
    • 제39권2호
    • /
    • pp.244-252
    • /
    • 2010
  • 본 연구는 충북 도내에 거주하는 남녀 중학생 282명을 대상으로 24시간회상법을 이용하여 식이섬유 섭취 수준을 조사하고 식이섬유 주요급원식품을 알아보았다. 또한 식품섭취빈도조사를 이용하여 조사방법 간의 식이섬유 섭취수준을 비교, 분석하고 식이섬유섭취수준의 타당도를 검증하고자 하였다. 본 연구의 결과를 요약하면 다음과 같다. 조사대상자의 성별에 따른 열량 및 영양소 섭취량은 에너지필요추정량과 비교할 때 남학생은 75.4%, 여학생은 93.8%였다. 단백질은 평균필요량의 남녀 각각 85.8% 및 102.6%의 섭취수준을 보이며 남학생의 경우 다소 부족한 결과를 나타내었다. 한국인 영양섭취기준의 평균필요량이 남녀학생 모두 낮은 섭취량을 보인 영양소는 칼슘, 철분 및 엽산 순이다. 전반적으로 남녀학생 모두 영양소의 섭취수준이 낮은 것으로 나타났다. 24시간회상법에 의한 남학생의 1일 평균 식이섬유 섭취량은 $17.6\pm5.3$ g(54.8%), 여학생은 $16.5\pm4.8$ g(68.8%)으로 나타났으며 남녀학생 모두 충분섭취량에 매우 부족한 상태로 남녀학생의 유의적인 차이는 없었다. 식이섬유의 주요 급원식품 중 두 방법 간의 공통적인 섭취순위를 보인 식품은 1위 백미, 2위 배추김치이며 채소류와 곡류로부터 총 식이섬유의 68.44%의 섭취를 보였고 주요급원식품군별로 분류하면 채소류, 곡류와 그 제품, 과일류, 두류, 해조류 순이었다. 24시간회상법과 식품섭취빈도조사법 간의 Pearson 상관계수는 0.71로 높게 나타났으며, 유의적인 상관성(p<0.05)을 보였다. 백미가 0.82로 가장 높은 상관성을 보였고, 19종의 식품품목이 상관관계에서 유의성을 보였다. 식이섬유 섭취량의 Pearson 상관계수가 낮고 유의성이 없는 식품을 제외한 후 섭취량을 보정한 결과 상관성이 0.78로 높게 나타났고 유의적인 상관성(p<0.01)을 보였다. 두 방법에 의해 산출된 섭취수준에 따라 각각 4등급으로 분류하였을 때 보정 후 낮은 등급이 일치할 확률이 90.2%에서 92.4%로 높아졌고 평균 식이섬유의 Kappa값은 0.54에서 0.59로 높아졌다. 따라서 본 연구에서 개발된 식품섭취빈도 조사지는 비교적 높은 타당성을 보였으므로 조사지의 수정보완을 통해 청소년의 식이섬유섭취상태 파악에 유용하리라 생각된다. 또한 섭취량 보정을 통해 선정된 식품품목 19종을 기초로 하여 학생들의 학교급식메뉴와 기호도를 조사하고 급식과 연계하여 식품품목을 증가시키기 위한 과정이 선행되어야 할 것이다. 따라서 식품섭취조사지의 개발과 적극적인 활용방안을 위해서는 지속적인 연구가 필요하리라 사료된다.

딥러닝 기반 터널 영상유고감지 시스템 개발 연구 (Development of a deep-learning based tunnel incident detection system on CCTVs)

  • 신휴성;이규범;임민진;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.915-936
    • /
    • 2017
  • 본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.

융합산업 규제영향분석 프레임워크 개발: 신산업 분야별 규제이슈 사례 연구 (Development of the Regulatory Impact Analysis Framework for the Convergence Industry: Case Study on Regulatory Issues by Emerging Industry)

  • 송혜림;서봉군;조성민
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.199-230
    • /
    • 2021
  • 산업의 경쟁력을 강화하기 위해서는, 새로운 기술의 개발 및 사업화와 함께 관련된 규제·애로를 발굴하고, 적기(適期)에 대응하는 것이 매우 중요한 요소로 작용한다. 현 정부에서는 이러한 산업적 변화에 대응하여 신산업에 대한 투자 확대와 함께 해당 산업 분야에 적용되고 있는 기존 규제메커니즘의 개혁을 추진하고 있다. 이러한 정부 정책방향에 맞춰, 본 연구는 신산업 분야에서 발생될 규제이슈를 선제적으로 예측하기 위해, 신제품 및 서비스의 시장진출에 있어서 걸림돌이 되는 기존 규제 제도를 발굴하고, 적정성 평가 및 개선방안을 마련하기 위한 규제영향분석 체계를 구축하고자 하였다. 그 결과로, 본 연구에서는 규제영향분석 프레임워크를 제시하였으며, 실제 규제이슈 사례를 적용하여, 분석하고 개선안을 도출하는 전반적인 과정을 보여주고자 하였다. 본 연구의 결과는 '18년도에 정부에서 집중적으로 투자를 진행했던 융합 신산업 분야의 제품 및 서비스를 대상으로 하여, 기획(R&D)단계부터 상용화 되기까지의 일련의 과정에서 발생 가능한 규제들을 사전적으로 검토하는 방법론을 제안하였다. 규제영향분석 프레임워크를 통해 도출된 규제 개선안은 소관 부처에 건의되어, 실제로 법령이 개정되었다는 점에서 연구의 실무적 및 정책적인 시사점을 제시할 수 있으며, 본 연구에서 개발한 규제영향분석 프레임워크는 향후 신산업 분야에서 나타날 수 있는 규제 이슈들을 해결하는 것에 도움을 줄 수 있을 것으로 예상한다.

ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래 (Current status and future of insect smart factory farm using ICT technology)

  • 석영식
    • 식품과학과 산업
    • /
    • 제55권2호
    • /
    • pp.188-202
    • /
    • 2022
  • 최근 곤충산업은 애완곤충, 천적 등 산업에서 사료, 식용, 약용곤충으로 그 활용범위가 확대되면서 곤충 원료의 품질관리에 대한 요구가 커지고 곤충 제품의 안전성 확보에 관심이 높아지고 있다. 전세계 곤충산업 시장은 많은 소규모 농가형 기업과 소수의 대기업으로 구성되어 있으며 전통적인 수작업 사육에서 고도로 자동화되고 기술적으로 진보된 플랜트형 사육 등 다양한 기술 수준의 사육형태가 존재한다. 산업규모가 확대되는 과정에서 사육환경의 설계는 온습도, 공기질 조절과 병원체 및 기타 오염 물질의 전파를 방지하는 것은 중요한 성공 요인이 되며 사육에서 부화, 사육, 가공에 이르기까지 생산의 안전성을 유지하기 위해서 통일된 운영시스템 아래 통제된 환경이 필요하다. 따라서 곤충의 생육과 사육환경의 빅데이터화 된 데이터베이스를 기반으로 외부 환경 변화에도 안정적인 사육환경 유지가 가능하고 곤충성장에 맞추어 사육환경을 제어하며 노동력 감소와 생산성 향상을 이루기 위한 ICT 기반 곤충 스마트팩토리팜의 설계 및 운용알고리즘을 개발하는 것은 곤충산업 발전의 필수 선결조건이 되고 있다. 특히 유럽 상업용 곤충사육시설은 상당한 투자자의 관심을 받아 곤충 회사가 대규모 생산시설로 건설하고 있는데 이는 EU가 2017년 7월 물고기양식 사료원료로 곤충 단백질의 사용을 승인한 후 가능해졌으며 이를 기반으로 곤충산업의 식용, 의료 등 다른 분야도 첨단기술을 접목하는 현상이 가속화되었다. 외국 곤충산업은 주로 전세계 식품 생산량의 30%에 이르는 소비 전 폐기물이라고 불리는 식품회사의 생산과잉 원료 등을 업사이클링을 통해 재활용생태계를 형성하는데 반해 우리나라는 가정 및 가게에서 발생하는 음식물폐기물 또는 농산물 가공부산물을 주로 이용한다는 점에서 사료 수집과 영양성분 유지, 위생 등 지속가능한 산업생태계를 이루는 데 어려움을 겪고 있다. 또한, 각 곤충 종은 고유하고 특정 사육기술을 요구하고 있다는 점을 감안할 때 곤충사육자는 각기 다른 종별 접근 방식을 채택해야 하는데 대부분의 곤충기업은 여전히 소규모로 운영되며 특히 농가형 기업의 경우 지식과 경험이 도제식으로 전승되는 경우가 많아 표준화되고 규격화된 사육기술이 유지되기 어려운 반면, 일부 곤충 기업은 대규모 사육시설에 스마트 통합 제어시스템을 도입하여 먹이주기, 물주기, 취급, 수확, 청소 시스템, 가공, 품질관리, 포장 및 보관과 같은 곤충 생산과 관련된 요소가 최적화된 사육 환경과 사육프로세스로 표준화되어가는 모습을 보이고 있으며 심지어 일부 유럽기업은 AI기술로 구동되는 완전 자율 모듈식 곤충시스템으로 사육 유지관리를 하고 있는 사례도 등장하기 시작하였다. 향후 전세계 곤충산업은 공급업체로부터 알이나 작은 유충을 구입하고 곤충을 성숙시키기까지 애벌레의 비육 즉 생산원료에 중점을 두는 시스템과 알을 낳고 수확하고 유충의 초기 전처리에 이르기까지 전체 생산 과정을 다루는 시스템, 곤충 유충 생산의 모든 단계와 제분, 지방 제거 및 단백질 또는 지방 분획 등 추가 가공 단계를 다루는 대규모 생산시스템 등으로 점점 세분화할 것으로 본다. 우리나라에서도 인공지능 및 ICT 첨단기술을 활용한 곤충스마트팩토리팜 연구 및 개발 등이 가속화되고 있어 곤충이 기존 사료, 식품 뿐만 아니라 천연 플라스틱 또는 천연성형소재 등 2차산업의 탄소제로 소재로 활용할 수 있도록 특정 종 육종과정 단축이나 기능성 강화를 위한 사육제어가 가능하도록 곧 곤충 스마트팩토리팜 한국형 맞춤사육시스템이 등장할 수 있을 것으로 보이며, 특히 곤충 제품의 지속 가능성을 높이기 위해 사료 및 자원 사용에 대한 통합 소프트웨어 접근 방식을 개발하는 것에 중점을 두고 진행되고 있다.

공공디자인 정책 결정에 ChatGPT의 활용 가능성에 관한연구 (A Study on the Potential Use of ChatGPT in Public Design Policy Decision-Making)

  • 손동주;윤명한
    • 서비스연구
    • /
    • 제13권3호
    • /
    • pp.172-189
    • /
    • 2023
  • 본 연구는 공공디자인 정책 결정에 있어 거대 언어 및 정보 모델인 ChatGPT가 기여할 가능성이 있는지에 대해 공공디자인 가진 특징을 중심으로 연구했다. 공공디자인은 디자인의 원리와 접근법을 사용하여 사회문제를 해결하고, 공공서비스 개선을 목표로 한다. 공공디자인 정책과 계획을 수립하기 위해서는 지역의 일반 현황, 인구 현황, 인프라 현황, 자원 현황, 안전 현황, 정책 현황, 법규 현황, 경관 현황, 공간 현황, 공공디자인 현황, 지역 이슈 등 방대한 자료를 기반으로 한다. 따라서 공공디자인은 방대한 자료와 더불어 방대한 언어를 수록하는 디자인 연구 분야다. 인공지능 기술의 급속한 발전과 공공디자인의 중요성을 고려해 ChatGPT와 같은 거대 언어 및 정보 모델이 공공디자인 정책에 어떻게 기여할 수 있는지 알아보고자 한다. 이와 함께, 공공디자인의 개념 및 원칙, 그리고 정책 개발과 실행에 대한 역할을 검토하고, ChatGPT의 개요 및 특징, 적용 사례나 ChatGPT의 선행 연구를 살펴 공공디자인 정책 결정에 활용할 수 있는지 연구했다. 연구 결과, ChatGPT는 공공디자인 정책 수립과정에서 방대한 언어 정보를 제공하고, 의사결정의 지원 역할이 가능하다는 사실을 밝혔다. 특히, ChatGPT는 정책 수립과정에서 다양한 관점을 제공하고, 정책 결정에 필요한 정보를 신속하게 제공하는 데 유용함이 있었다. 이와 함께 정부 정책 개발에 인공지능을 활용하는 추세라는 것이 여러 논문을 통해 확인되었다. 하지만, ChatGPT의 활용에는 윤리적, 법적, 개인 프라이버시 등의 문제 또한 발견되었다. 무엇보다 윤리적인 문제가 제기되었으며, 편향성과 공정성 관련 문제 또한 나타났다. ChatGPT를 공공디자인의 정책 결정에 실질적으로 활용하려면, 첫째, 정책 개발자와 공공디자인 전문가의 역량을 일정부분 키워 활용해야 한다. 둘째, 가칭 '인공지능 정책 활용에 관한 조례'라는 법령(法令)을 마련해 법률(法律)적 정비가 이뤄지기 전까지 지속해서 보완해가면서 활용하는 것이다. 현재로서는 이 두 가지 방안을 적용해 활용하는 것이 필요하다. 따라서 공공디자인 정책 결정에 있어 ChatGPT와 같은 거대 언어 및 정보 모델의 활용은 방대한 언어를 수록하는 디자인 분야에서는 활용할 가치가 충분하다는 것이다.

후두암의 방사선치료 Patterns of Care Study를 위한 프로그램 항목 개발: 예비 결과 (Investigation of Study Items for the Patterns of Care Study in the Radiotherapy of Laryngeal Cancer: Preliminary Results)

  • 정웅기;김일한;안성자;남택근;오윤경;송주영;나병식;정경애;권형철;김정수;김수곤;강정구
    • Radiation Oncology Journal
    • /
    • 제21권4호
    • /
    • pp.299-305
    • /
    • 2003
  • 목적: 후두암 방사선치료의 표준화를 위하여 후두암에 관한 기본적인 임상 자료를 축적하고 필요한 조사 항목을 결정하여 전국적인 웹 기반 데이터 베이스 시스템을 개발하고자 하였다. 대상 및 방법: 1998년 1월부터 1999년 12월까지 호서호남 지역에서 후두암으로 진단되어 방사선치료를 받은 환자를 대상으로 임상적 분석을 시행하였다. 환자 선정 기준은 18세 이상이며 과거력상 타 장기의 암 진단 병력이 없고 후두에서 기원한 원발성 상피세포암으로 과거 후두에 대한 다른 질환으로 치료력이 없는 환자를 대상으로 하였다. 후두암에 관한 조사 항목 개발은 대한방사선종양학회 호서호남지회 소속 병원의 전문의들이 합의하여 일차적으로 선정한 항목에 대하여 각 병원에서 자체적으로 조사하였다. 통계처리는 SPSS v10.0을 이용하였다. 결과: 자료가 수집된 총 증례수는 45예이었다. 환자의 연령분포는 28$\~$88세(중앙값: 61)이었고 남녀비는 10 대 1로 대부분 남자에 발생하였다. 원발부위는 성문암이 28예(62$\%$), 성문상부암이 17예(38$\%$)이었다. 병리소견으로는 편평세포암이 대부분이었다(44/45, 98$\%$). AJCC (1997년도) 병기 I+II는, 성문암 28예 중 24예(86$\%$)에 비해 성문상부암의 경우는 16예 중 8예(50$\%$)이었다(p=0.002). 증상은 애성이 n예(89%$\%$로 가장 많았다. 진단은 간접후두경이 전체환자에서, 직접후두경검사는 43예(98$\%$)에서 각각 시행되었다. 치료로서 성문암 28예와 성문상부암 17예 중, 방사선 단독치료는 21예(75$\%$), 6예(35$\%$)에서 각각 시행되었다. 또한 수술요법과 방사선요법의 병용은 각각 5예(18$\%$), 8예(47$\%$)이었고, 항암화학요법과 방사선요법의 병용치료는 각각 2예(7$\%$), 3예(18$\%$)이었으나 두 원발 병소 간에 병용치료 빈도의 유의한 차이는 없었다(p=0.20). 방사선치료는 모두 선형가속기 6 MV X-ray를 이용하여 통상적 분할조사 법으로 시행되었다. 분할선량은 성문암 환자의 86$\%$에서 2.0 Gy를 사용한 반면 성문상부암은 59$\%$에서 1.8 Gy를 각각 사용하였다. 방사선단독치료를 완료한 환자에서 원발병소의 평균 총방사선량은 성문암에서 65.98 Gy, 성문상부암에서 70.15 Gy이었다. 수집된 자료를 기초로 후두암 방사선치료형태 연구에 필요한 총 12개의 모듈과 90개의 항목을 개 발하였다. 결론: 본 연구에서는 후두암 데이터베이스 시스템에 필요한 연구 항목을 개발하였다. 향후 웹 기반 데이터 베이스 시스템을 완성하고 전국의 방사선치료 자료를 축적하여 후두암에 대한 한국형 방사선치료의 표준화 및 적정화를 기하고자 한다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

돼지인공수정용 정액액상보존제 Kp 의 개발에 관한 연구 I. Kp 의 pH 조절과 냉동정자에 의한 보존성 검정 (A Study on Development of Boar Semen Extender Kp for Swine AI I. Stabilization of pH Change and In Vitro Survival of Frozen-Thawed Boar Sperm in Kp Extender)

  • 김선의;정구민;서동삼;김득중;김인철;김현종;신영수;임경순
    • 한국가축번식학회지
    • /
    • 제22권4호
    • /
    • pp.405-410
    • /
    • 1998
  • 본 연구는 독자 개발한 돼지액상정액희석제 Kp(한국생명과학연구소)에 pH를 안정화하여 보존 중 정자의 운동성을 유지시킬 수 있도록 EDTA, Tris, Citrate buffer의 적정 첨가농도를 결정하고자 실시하였다. Basic Kp와 BTS (Mini-tube, Germany; BT-Sg), BTS (Tri-bio, USA; BTSa), Modena (SGI, USA)를 17$^{\circ}C$ 에서 각각 보관한 경우 모든 희석액에서 시간 경과에 따라 pH가 증가하였고, Basic Kp 는 희석 당일의 pH가 다른 희석액에 비해 높게 나타났는데 이것은 돼지액상정액의 생리적인 pH인 6.8~7.5에 비해서도 높은 수준이었다. 정액내의 pH 저하를 방지해 주고 정액의 생리적인 pH를 유지하기 위하여 Basic Kp에 EDTA, Tris, Citrate buffer를 단계적으로 첨가하면서 시간 경과에 따른 pH 변화를 살펴 본 결과 1.25g /L EDTA, 1.42g /L Tris, 1.00g /L Citrate를 첨가한 경우 (Modified Kp) pH는 l일째 6.88에서 6일째 7.33으로 유지되었다. 특히, Modified Kp에 첨가된 buffer 의 농도는 Modena와 다른 희석제에 첨가된 농도에 비해 1/2 에서 1/4 정도로 낮은 수준이었다. Modified Kp 와 Basic Kp, BTSg, BTSa 및 Modena로 냉동-융해된 돼지 정자를 희석하여 보존한 경우 정자의 운동성은 Modified Kp가 다른 희석액에 비해 유의하게 높게 나타났다(87.0% vs. 71.0~48.0% in day 1; 13.3% vs. 6.3~0% of day 6), 이상의 결과를 종합해 볼 때, Modified Kp는 낮은 농도의 EDTA, Tris, Citrate buffer 첨가에도 불구하고 돼지정자의 생리적인 pH 수준을 잘 유지할 수 있었으며, 수입되어 냉동-융해된 돼지 정자에 사용하는 희석제 BTSg, BTSa, Modena 보다도 정자의 운동성에 효과적이었다.

  • PDF

고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과 (Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi)

  • 김철진;박형연;김재은;박희진;이본수;최유상;이준희;윤제용
    • 한국미생물·생명공학회지
    • /
    • 제37권3호
    • /
    • pp.248-257
    • /
    • 2009
  • Vibrio harveyi 쿼럼 센싱 (quorum sensing; QS) 신호전달에 대한 저해제들이 주 신호물질인 N-3-hydroxybutanoyl-L-homoserine lactone(3-OH-$C_4$-HSL)의 분자 구조를 변형함에 의해 개발되었다. 일련의 구조 변형체들인 N-(3-hyoxysulfonyl)-L-homoserine lactones(HSHLs)들은 고체상 유기합성법 (solid-phase organic synthesis method)으로 합성되었다. 이 물질들의 생체내 쿼럼 센싱 저해능이 V. harveyi 발광을 이용한 bloassay를 system에 의해 측정되었을 때, 모두 의미있는 저해효과를 보여주었다. 이 물질들과 3-OH-$C_4$-HSL 수용체 단백질인 LuxN 사이의 상호작용을 분석하기 위하여 LuxN의 신호 결합 부위를 다른 acyl-HSL 결합 단백질들과의 유사성에 기초하여 시험적으로 결정하였다. 이 추정 신호결합 부위의 부분적 삼차구조를 ORCHESTRA program을 이용하여 예측하였으며, 이 부위 내에서 3-OH-$C_4$-HSL와 HSHLs의 결합 형태와 에너지를 계산하였다. 이렇게 모델링을 통해 얻어진 결과와 생체 내 bioassay를 통해 얻어진 결과의 비교를 통해, 수용체 단백질과 그 리간드 사이의 상호 작용에 관한 in silica 해석이 특히 단백질의 삼차 구조에 대한 정보가 제한적인 경우에 보다 나은 저해제 개발을 위한 유용한 방법이 될 수 있음을 제안한다.

국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구 (A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM))

  • 신우택;이진희;김정우;신동선;이영상;황승호
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-178
    • /
    • 2020
  • 국방부는 감소되는 부대 및 병력자원의 문제해결과 전투력 향상을 위해 4차 산업혁명 기술(빅데이터, AI)의 적극적인 도입을 추진하고 있다. 국방 정보시스템은 업무 영역 및 각군의 특수성에 맞춰 다양하게 개발되어 왔으며, 4차 산업혁명 기술을 적극 활용하기 위해서는 현재 폐쇄적으로 운용하고 있는 국방 데이터 관리체계의 개선이 필요하다. 그러나, 국방 빅데이터 및 인공지능 도입을 위해 전 정보시스템에 데이터 표준을 제정하여 활용하는 것은 보안문제, 각군 업무특성 및 대규모 체계의 표준화 어려움 등으로 제한사항이 있고, 현 국방 데이터 공유체계 제도적으로도 각 체계 상호간 연동 소요를 기반으로 체계간 연동합의를 통해 직접 연동을 통하여 데이터를 제한적으로 공유하고 있는 실정이다. 4차 산업혁명 기술을 적용한 스마트 국방을 구현하기 위해서는 국방 데이터를 공유하여 잘 활용할 수 있는 제도마련이 시급하고, 이를 기술적으로 뒷받침하기 위해 국방상호운용성 관리지침 규정에 따라 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 국방 데이터의 체계적인 표준 관리를 지원하는 다중 데이터 저장소 관리(MRMM) 기술개발이 필요하다. 본 연구에서는 스마트 국방 구현을 위해 가장 기본이 되는 국방 데이터의 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고, 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 다중 데이터 저장소 관리 (MRMM) 기술을 제시하고, 단어의 유사도를 통해 MRMM의 실현 방향성을 구현하였다. MRMM을 바탕으로 전군 DB의 표준화 통합을 좀 더 간편하게 하여 실효성 있는 국방 빅데이터 및 인공지능 데이터 구현환경을 제공하여, 스마트 국방 구현을 위한 막대한 국방예산 절감과 전투력 향상을 위한 전력화 소요기간의 감소를 기대할 수 있다.