Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi

고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과

  • Kim, Cheol-Jin (Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey) ;
  • Park, Hyung-Yeon (Bio-Max Institute, Seoul National University) ;
  • Kim, Jae-Eun (Environment Group, Samsung Advanced Institute of Technology, Samsung Electronics Co.) ;
  • Park, Hee-Jin (School of Chemical and Biological Eng., Seoul National University) ;
  • Lee, Bon-Su (Department of Chemistry, College of Natural Science, Inha University) ;
  • Choi, Yu-Sang (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Yoon, Je-Yong (School of Chemical and Biological Eng., Seoul National University)
  • 김철진 (럿거스 뉴저지 주립대학교 화학과) ;
  • 박형연 (서울대학교 생명공학공동연구원) ;
  • 김재은 (삼성전자 종합기술원) ;
  • 박희진 (서울대학교 화학생물공학부) ;
  • 이본수 (인하대학교 자연과학대학 화학과) ;
  • 최유상 (부산대학교 약학대학 약학과) ;
  • 이준희 (부산대학교 약학대학 약학과) ;
  • 윤제용 (서울대학교 화학생물공학부)
  • Published : 2009.09.28

Abstract

The inhibitors against Vibrio harveyi quorum sensing (QS) signaling were developed by modifying the molecular structure of the major signal, N-3-hydroxybutanoyl-L-homoserine lactone (3-OH-$C_4$-HSL). A series of structural derivatives, N-(3-hydroxysulfonyl)-L-homoserine lactones (HSHLs) were synthesized by the solid-phase organic synthesis method. The in vivo QS inhibition by these compounds was measured by a bioassay system using the V. harveyi bioluminescence, and all showed significant inhibitory effects. To analyze the interaction between these compounds and LuxN, a 3-OH-$C_4$-HSL receptor protein of V. harveyi, we tentatively determined the putative signal binding domain of LuxN based on the sequence homology with other acyl-HSL binding proteins, and predicted the partial 3-D structure of the putative signal binding domain of LuxN by using ORCHESTRA program, and further estimated the binding poses and energies (docking scores) of 3-OH-$C_4$-HSL and HSHLs within the domain. In comparison of the result from this modeling study with that of in vivo bioassay, we suggest that the in silica interpretation of the interaction between ligands and their receptor proteins can be a valuable way to develop better competitive inhibitors, especially in the case that the structural information of the protein is limited.

Vibrio harveyi 쿼럼 센싱 (quorum sensing; QS) 신호전달에 대한 저해제들이 주 신호물질인 N-3-hydroxybutanoyl-L-homoserine lactone(3-OH-$C_4$-HSL)의 분자 구조를 변형함에 의해 개발되었다. 일련의 구조 변형체들인 N-(3-hyoxysulfonyl)-L-homoserine lactones(HSHLs)들은 고체상 유기합성법 (solid-phase organic synthesis method)으로 합성되었다. 이 물질들의 생체내 쿼럼 센싱 저해능이 V. harveyi 발광을 이용한 bloassay를 system에 의해 측정되었을 때, 모두 의미있는 저해효과를 보여주었다. 이 물질들과 3-OH-$C_4$-HSL 수용체 단백질인 LuxN 사이의 상호작용을 분석하기 위하여 LuxN의 신호 결합 부위를 다른 acyl-HSL 결합 단백질들과의 유사성에 기초하여 시험적으로 결정하였다. 이 추정 신호결합 부위의 부분적 삼차구조를 ORCHESTRA program을 이용하여 예측하였으며, 이 부위 내에서 3-OH-$C_4$-HSL와 HSHLs의 결합 형태와 에너지를 계산하였다. 이렇게 모델링을 통해 얻어진 결과와 생체 내 bioassay를 통해 얻어진 결과의 비교를 통해, 수용체 단백질과 그 리간드 사이의 상호 작용에 관한 in silica 해석이 특히 단백질의 삼차 구조에 대한 정보가 제한적인 경우에 보다 나은 저해제 개발을 위한 유용한 방법이 될 수 있음을 제안한다.

Keywords

References

  1. Bassler, B. L., M. Wright, and M. R. Silverman. 1994. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13: 273-286 https://doi.org/10.1111/j.1365-2958.1994.tb00422.x
  2. Baveja, J. K., G Li, R. E. Nordon, E. B. H. Hume, N. Kumar, M. D. P. Willcox, and L. A. Poole-Warren. 2004. Biological perfonnance of a novel synthetic furanone-based antimicrobial. Biomaterials 25: 5013-5021 https://doi.org/10.1016/j.biomaterials.2004.02.007
  3. Bottomley, M. J., E. Muraglia, R. Bazzo, and A. Carfi.2007. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem. 282(18): 13592-13600 https://doi.org/10.1074/jbc.M700556200
  4. Castang, S., B. Chantegrel, C. Deshayes, R. Dolmazon, P. Gouet, R. Haser, S. Reverchon, W. Nasser, N. Hugouvieux-Cotte-Pattat, and A. Doutheau. 2004. N-Sulfonyl homoserine lactones as antagonists of bacteria1 quorum sensing. Bioorg Med. Chem. Lett. 14: 5145-5149 https://doi.org/10.1016/j.bmcl.2004.07.088
  5. Clark, M., R. D. Cramer III, and N. Van Opdenbosch. 1989. Validation of the General Purpose Tripos 5.2 Force Field. J. Comp. Chem. 10: 982-1012 https://doi.org/10.1002/jcc.540100804
  6. Daniels, R., J. Vanderleyden, and J. Michiels. 2004. Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev. 28: 261-289 https://doi.org/10.1016/j.femsre.2003.09.004
  7. Defoirdt, T., N. Boon, P. Bossier, and W. Verstraete. 2004. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240: 69-88 https://doi.org/10.1016/j.aquaculture.2004.06.031
  8. Freeman, J. A., B. N. Lilley, and B. L. Bassler. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 35(1): 139-149 https://doi.org/10.1046/j.1365-2958.2000.01684.x
  9. Henke, J. M. and B. L. Bassler. 2004. Bacterial social engagements. Trends Cell Biol. 14(11): 648-656 https://doi.org/10.1016/j.tcb.2004.09.012
  10. He, X. and C. Fuqua. 2006. Rhizosphere Communication: Quorum sensing by the Rhizobia. J. Microbiol. Biotechnol. 16: 1661-1677
  11. Hsu, C. S. and M. Green. 2001. Fragment-free accurate mass measurement of complex mixture components by gas chromatography/field ionization-orthogonal acceleration time-of-flight mass spectrometry: an unprecedented capability for mixture analysis. Rapid Commun. Mass Sp. 15: 236-239 https://doi.org/10.1002/1097-0231(20010215)15:3<236::AID-RCM197>3.0.CO;2-B
  12. Jacek, S., B. Markus, S. Isabel, D. Hans-Martin, and S. Martin. 2001. Synthesis, molecular modeling, and structure-activity relationship of benzophenone-based CAAX peptidomimetic famesyltransferase inhibitors. J. Med. Chem. 44: 2886-2899 https://doi.org/10.1021/jm010872r
  13. Kirn, C., J. Kirn, H. Y. Park, R. J. C. McLean, C. K. Kim, J. Jeon, S. S. Yi, Y. G Kim, Y. S. Lee, and J. Yoon. 2007. Molecular modeling, synthesis, and screening of new bacterial quorum-sensing antagonists. J. Microbiol. Biotechnol. 17: 1598-1606
  14. Kim, C, J. Kim, H. Y. Park, H. J. Park, J. H. Lee, C. K. Kim, and J. Yoon. 2008. Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 80(1): 37-47 https://doi.org/10.1007/s00253-008-1474-6
  15. Kim, C, J. Kim, H. Y. Park, J. H. Lee, H. J. Park, C. K. Kim, and J. Yoon. 2009. Structural understanding of quorumsensing inhibitors by molecular modeling study in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. In press https://doi.org/10.1007/s00253-009-1954-3
  16. Ko, D. H., D. J. Kim, C. S. Lyu, I. K. Min, and H. S. Moon. 1998. New cleavage approaches to combinatorial synthesis of homoserine lactones. Tetrahedron Lett. 39: 297-300 https://doi.org/10.1016/S0040-4039(97)10546-9
  17. Manefield, M., T. B. Rasmussen, M. Henzter, J. B. Andersen, P. Steinberg, S. Kjelleberg, and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiol. 148: 1119-1127
  18. Miller, K. J. 1990. Additivity methods in molecular polarizability. J.Am. Chem. Soc. 112: 8533-8542 https://doi.org/10.1021/ja00179a044
  19. Miller, M. B., and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-99 https://doi.org/10.1146/annurev.micro.55.1.165
  20. Montalvao, R. W., R. E. Smith, S. C. Lovell, and T. L. Blundell. 2005. CHORAL: a differential geometry approach to the prediction of the cores of protein structures. Bioinformatics 21: 3719-3725 https://doi.org/10.1093/bioinformatics/bti595
  21. Niu, C., S. Afre, and E. S. Gilbert. 2006. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Letters in Applied Microbiology 43: 489-494 https://doi.org/10.1111/j.1472-765X.2006.02001.x
  22. Persson, T., T. H. Hansen, T. B. M. E. Rasmussen, M. Givskov, and J. Nielsen. 2005. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. J. Org. Biomol. Chem. 3: 253-262 https://doi.org/10.1039/b415761c
  23. Rasmussen, T. B., and M. Givskov. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296: 149-161 https://doi.org/10.1016/j.ijmm.2006.02.005
  24. Semmelhack, M. F., S. R. Campagna, C. Hwa, M. J. Federle, and B. L. Bassler. 2004. Boron Binding with the Quorum Sensing Signal AI-2 and Analogues. Org. Lett. 6: 2635-2637 https://doi.org/10.1021/ol048976u
  25. Smith, K. M., Y. Bu, and H. Suga. 2003. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem. Biol. 10: 563-571 https://doi.org/10.1016/S1074-5521(03)00107-8
  26. SYBYL molecular modeling software 1999. Tripos Inc., South Hanley Rd, Suite 303, St. Louis, MO 63144
  27. Zhang, R. G., T. Pappas, J. L. Brace, P. C. Miller, T. Oulmassov, J. M. Molyneaux, J. C. Anderson, J. K. Bashkin, S. C. Winans, and A. Joachimiak. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971-974 https://doi.org/10.1038/nature00833
  28. The NMR-data for the compound 6a: $^{I}H$ NMR ($CDCl_{3}$, 400MHz) $\delta$=7.89 (s, 1H, NH), 4.79 (s, 1H, OH) 4.53 (ddd, J=5.96 hz,1H, CH-Lac), 4.46 (ddd, J=5.96 hz, 1H, CH-Lac), 3.88 (m, 2 H, $CH_2$), 3.47-3.44 (m, 1 H, CH-Lac), 2.90 (d, J=6.96 hz, 2H, $CH_2$), 2.70 (d, J=6.12hz, 2H, $CH_2$), 2.52-2.49 (m, 1H, CH-Lac), 2.10-2.08 (m, 1H, CH-Lac), 2.0 (s, 1H, NH), 1.65 (m, 2H, $CH_2$), 1.48-1.39 (m. 8H, $CH_2$); HRMS (CI) calcd for $C_{13}H_{24}N_2O_5S$ ($M^+$ + 1) 320.4100, found 320.4101 (Abbreviations: DIEA; diisopropyl ethylamine, HOBt, 1-hydroxybenzotriazole, BOP; benzotriazol-l-yl-oxy-tris(dimethylamino)phosphonium hexafluorophosphate, NMP; N-methyl-2-pyrrolidone, THF; tetrahydrofuran, and DMF; dimethylformamide)