• Title/Summary/Keyword: AFm phase

Search Result 205, Processing Time 0.037 seconds

A Study on Corrosion Resistance of CA2-Mixed Paste (CA2 혼입 페이스트의 부식저항성에 관한 연구)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.289-297
    • /
    • 2022
  • Deterioration in durability of structures due to the steel corrosion is difficult to determine whether or not corrosion is initiated and how much propagated, and moreover, repair and maintenance are not easy to deal with. Therefore, preventive treatments can be the best option to avoid the deterioration. Various methods for preventing corrosion of steel, such as electrochemical treatments, anti-corrosion agents and steel surface coatings, are being developed, but economic and environmental aspects make it difficult to apply them to in-situ field. Thus, the purpose of this study was to improve corrosion resistance by using CA-based clinker that are relatively simple and expected to be economically profitable Existing CA-based clinkers had problems such as flash setting and low strength development during the initial hydration process, but in order to solve this problem, CA clinker with low initial reactivity were used as binder in this study. The cement paste used in the experiments was replaced with CA2 clinker for 0%, 10%, 20%, and 30% in OPC. And the mixture used in the chloride binding test for the extraction of water-soluble chloride was intermixed with Cl- 0.5%, 1%, 2%, and 3% by weight of binder content. To evaluate characteristic of hydration heat evolution, calorimetry analysis was performed and simultaneously chloride binding capacity and acid neutralization capacity were carried out. The identification of hydration products with curing ages was verified by X-ray diffraction analysis. The free chloride extraction test showed that the chlorine ion holding ability improved in order OC 10 > OC 30 > OC 20 > OC 0 and the pH drop resistance test showed that the resistance capability in pH 12 was OC 0 > OA 10 > OA 20 > OA 30. The XRD analyses showed that AFm phase, which can affect the ability to hold chlorine ions, tended to increase when CA2 was mixed, and that in pH12 the content of calcium hydroxide (Ca(OH)2), which indicates pH-low resistance, decreased as CA2 was mixed

GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates (실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구)

  • Ha, Jun-Seok;Park, Jong-Sung;Song, Oh-Sung;Yao, T.;Jang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.159-164
    • /
    • 2009
  • We fabricated 40 nm-thick cobalt silicide ($CoSi_2$) as a buffer layer, on p-type Si(100) and Si(111) substrates to investigate the possibility of GaN epitaxial growth on $CoSi_2$/Si substrates. We deposited GaN using a HVPE (hydride vapor phase epitaxy) with two processes of process I ($850^{\circ}C$-12 minutes + $1080^{\circ}C$-30 minutes) and process II ($557^{\circ}C$-5 minutes + $900^{\circ}C$-5 minutes) on $CoSi_2$/Si substrates. An optical microscopy, FE-SEM, AFM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. In case of process I, it showed no GaN epitaxial growth. However, in process II, it showed that GaN epitaxial growth occurred. Especially, in process II, GaN layer showed selfaligned substrate separation from silicon substrate. Through XRD ${\omega}$-scan of GaN <0002> direction, we confirmed that the combination of cobalt silicide and Si(100) as a buffer and HVPE at low temperature (process II) was helpful for GaN epitaxy growth.

A Study of Copper Electroless Deposition on Tungsten Substrate (텅스텐 기판 위에 구리 무전해 도금에 대한 연구)

  • Kim, Young-Soon;Shin, Jiho;Kim, Hyung-Il;Cho, Joong-Hee;Seo, Hyung-Ki;Kim, Gil-Sung;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.495-502
    • /
    • 2005
  • Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of $CuSO_4$ 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at $60^{\circ}C$. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak ($Cu_2O$ peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of $Cu_2O$ phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.

Preparation of Biopolymer coated Magnetite And Magnetic Biopolymer Microsphere Particles for Medical Application (의학적 응용을 위한 생체 고분자로 피복 된 자성 나노 입자와 미소구체의 제조)

  • Ko, Sang-Gil;Cho, Jun-Hee;Ahn, Yang-kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2006
  • We have synthesized uniform nanometer sized magnetite particles using chemical coprecipitation technique through a sonochemical method with surfactant such as oleic acid. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetite nanoparticles is surface phase morphology and biopolymer-microspheres for Application Medical. Magnetite nanoparticles coated biopolymer. Atomic Force Microscope (AFM) was used to image the coated nanoparticles. Magnetic colloid suspensions containing particles with sodium oleate, chitosan and $\beta$-glucan have been prepared. The morphology of the magnetic biopolymer microsphere particles were characterized using optical microscope. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the biopolymer microspheres and magnetite coated biopolymer including magnetite nanoparticles. Magnetic Resonance (MR) imaging was used to investigate biopolymer coated nanoparticles and biopolymer microspheres.

Effect of sputtering conditions on the exchange bias and giant magnetoresistance in Si/Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta spin valves (스파터링 조건이 FeMn계 top 스핀 밸브의 exchange bias 및 자기적 특성에 미치는 영향)

  • Kim, K.Y.;Shin, K.S.;Han, S.H.;Lim, S.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2000
  • Top spin valve samples with a structure Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta were deposited on a Si(100) substrate by changing d.c. magnetron sputtering conditions and the exchange-bias and magnetic properties of samples were investigated. The Exchange field, H$\_$ex/ increased with increase of sputtering power of FeMn from 30 to 150 W and CoFe from 30 to 100 W deposited on the Cu, the increase of H$\_$ex/ was found due to the improvement of preferred orientation of (111) FeMn phase from XRD results. In the case of Cu, H$\_$ex/ decreased with the increase of sputtering pressure ranging from 1 to 5 mTorr. The relationship between exchange field and resistance was investigated, spin valve samples with a large exchange field showed the lower resistance, which was strongly dependent on the good crystallinity and grain size increase as well as lower scattering effects. The Cu thickness was changed from 22 to 38 $\AA$ for Si/Ta/NiFe/CoFe/Cu(t), 30 W/CoFe, 100 W/FeMn, 100 W/Ta spin valve structures, MR ratio of 6.5 % and exchange field of about 190 Oe were obtained for the sample with Cu of 22 $\AA$ thickness. The increase of exchange field with decrease of Cu thickness was explained by FM/AFM spin-spin interaction.

  • PDF

Deposition of Poly-$Si_{1-x}Ge_x$ Thin Film by RTCVD (RTCVD에 의한 다결정 $Si_{1-x}Ge_x$ 박막 증착)

  • Kim, Jae-Jung;Lee, Seung-Ho;So, Myeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.690-698
    • /
    • 1995
  • The Poly-S $i_{1-x}$G $e_{x}$ thin films were deposited on oxidized Si wafer by RTCVD(rapid thermal chemical vapor deposition) using Si $H_4$and Ge $H_4$, at 450 ~5$50^{\circ}C$. The variation of Ge mole fraction and the deposition rate of S $i_{1-x}$G $e_{x}$ thin film were studied as a function of the deposition temperature and the Ge $H_4$/Si $H_4$input ratio, and the crystal phase and the surface roughness were studied by XRD and AFM(atomic force microscopy), respectively. The experimental results showed that the activation energy for the deposition of poly-S $i_{1-x}$G $e_{x}$ was about 32~37Kca /mol and the deposition rate of S $i_{1-x}$G $e_{x}$ thin films was increased with increasing the deposition temperature and the input ratio. From the analysis of composition, it was known that the Ge mole fraction within the poly-S $i_{1-x}$G $e_{x}$ thin film was decreased with decreasing the input ratio and increasing the deposition temperature. As-deposited S $i_{1-x}$G $e_{x}$ thin films were polycrystalline over the entire experimental range. But those were amorphous at the deposition temperature of 450, 475$^{\circ}C$ and the input ratio of 0.05. By adding the Ge $H_4$, poly-S $i_{1-x}$G $e_{x}$ thin film were deposited at relatively lower deposition temperatures($\leq$ 5$50^{\circ}C$) than those of conventional poly-Si(>$600^{\circ}C$). From surface roughness measurement of poly-S $i_{1-x}$G $e_{x}$ it was found that the surface roughness( $R_{i}$ ) increased with increasing the deposition temperature and input ratio.and input ratio.

  • PDF

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method (In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구)

  • Lee, Bom Yi;Park, Ju Young;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.336-340
    • /
    • 2015
  • Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.

Electrochemical characterization of LiCoO2 thin film by sol-gel process for annealing temperature and time (졸-겔법에 의해 합성한 리튬 코발트 산화물의 열처리 온도와 시간에 따른 전기 화학적 특성)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • $LiCoO_2$ thin film have received attention as cathodes of thin-film microbatteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and electrochemical properties were investigated under annealing temperature and time. The phycochemical properties of $LiCoO_2$ thin film were investigated by X-ray diffraction, scaning electron microscopy and atomic force microscopy. The electrochemical properties were characterized using galvanostatic charging/discharging cycling tests. From X-ray diffraction, as-grown films annealed at $550^{\circ}C$ and $750^{\circ}C$ are presumed to be spinel structure and a single phase of the layered-rock-salt, respectively. The RMS roughness and grain size of the films which annealed at $750^{\circ}C$ has similar values for annealing time 10 and 30 min, while for annealing time 120 min surface roughness, grain size increase and pore appearance were observed. The first discharge capacity of $LiCoO_2$ thin films annealed at $750^{\circ}C$ for 10, 30 and 120 min is about 54.5, 56.8 and $51.87{\mu}Ah/cm^2{\mu}m$, respectively. Corresponding capacity retention at 50th cycle is 97.25, 76.69, 77.19%.

Study on Formation of FePd Nano-dot Using Agglomeration of Fe/Au Bilayer (Fe/Au 이중층의 응집현상을 이용한 FePd 나노 점 형성에 관한 연구)

  • Koo, J.K.;Kim, J.M.;Ryua, D.H.;Choi, B.J.;Kim, D.W.;Lee, D.H.;Kim, U.I.;Mitani, S.;J.G., M. Kamiko;Ha, J.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • [ $L1_0$ ]phase FePd nano-dot structures were successfully fabricated on self-organized Fe/Au bilayers. With atomic force microscopy, it is determined that surface morphologies of initially flat Fe/Au bilayer films were agglomerated and transformed their shape into nano-dots structures with increasing annealing temperature. With this bilayer as a template, FePd multilayers were deposited at various temperatures, i.e. $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$, and $450^{\circ}C$. Surface morphologies of FePd superlattice had a near resemblance to self-organized bilayer. According to X-ray diffraction results, it is confirmed that $L1_0$ superlattice structures of FePd were obtained from samples which were annealed above $350^{\circ}C$. Results of X-ray photoelectron spectroscopy depth-profile analysis showed that chemical composition is identical to deposition sequence. As a result, without additional etching processes, fabrication of chemically ordered FePd superlattice nano-dots was achieved.

Characteristics of the Diamond Thin Film as the SOD Structure

  • Lee, You-Seong;Lee, Kwang-Man;Ko, Jeong-Dae;Baik, Young-Joon;Chi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.58-58
    • /
    • 1999
  • The diamond films which can be applied to SOD (silicon-on-diamond) structure were deposited on Si(100) substrate using CO/H2 CH4/H2 source gases by microwave plasma chemical vapor deposition(MPCVD), and SOD structure have been fabricated by poly-silicon film deposited on the diamond/Si(100) structure y low pressure chemical vapor deposition(LPCVD). The phase of the diamond film, surface morpholog, and diamond/Si(100) interface were confirmed by X-ray diffraction(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM), and Raman spectroscopy. The dielectric constant, leakage current and resistivity as a function of temperature in films are investigated by C-V and I-V characteristics and four-point probe method. The high quality diamond films without amorphous carbon and non-diamond elements were formed on a Si(100), which could be obtained by CO/H2 and CH4/H2 concentration ratio of 15.3% and 1.5%, respectively. The (111) plane of diamond films was preferentially grown on the Si(100) substrate. The grain size of the films deposited by CO/H2 are gradually increased from 26nm to 36 nm as deposition times increased. The well developed cubo-octahedron 100 structure nd triangle shape 111 are mixed together and make smooth and even film surface. The surface roughness of the diamond films deposited by under the condition of CO/H2 and CH4/H2 concentration ratio of 15.3% and 1.5% were 1.86nm and 3.7 nm, respectively, and the diamond/Si(100) interface was uniform resistivity of the films deposited by CO/H2 concentration ratio of 15.3% are obtained 5.3, 1$\times$10-9 A/cm, 1 MV/cm2, and 7.2$\times$106 $\Omega$cm, respectively. In the case of the films deposited by CH4/H2 resistivity are 5.8, 1$\times$10-9 A/cm, 1 MV/cm, and 8.5$\times$106 $\Omega$cm, respectively. In this study, it is known that the diamond films deposited by using CO/H2 gas mixture as a carbon source are better thane these of CH4/H2 one.

  • PDF