Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.1.007

Study on Formation of FePd Nano-dot Using Agglomeration of Fe/Au Bilayer  

Koo, J.K. (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, J.M. (Department of Electronic Materials Engineering, Kwangwoon University)
Ryua, D.H. (Department of Electronic Materials Engineering, Kwangwoon University)
Choi, B.J. (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, D.W. (Department of Electronic Materials Engineering, Kwangwoon University)
Lee, D.H. (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, U.I. (Department of Electronic Materials Engineering, Kwangwoon University)
Mitani, S. (Magnetic Materials Center, National Institute for Materials Science)
J.G., M. Kamiko (Institute of Industrial Science, The University of Tokyo)
Ha, J.G. (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.1, 2011 , pp. 7-13 More about this Journal
Abstract
[ $L1_0$ ]phase FePd nano-dot structures were successfully fabricated on self-organized Fe/Au bilayers. With atomic force microscopy, it is determined that surface morphologies of initially flat Fe/Au bilayer films were agglomerated and transformed their shape into nano-dots structures with increasing annealing temperature. With this bilayer as a template, FePd multilayers were deposited at various temperatures, i.e. $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$, and $450^{\circ}C$. Surface morphologies of FePd superlattice had a near resemblance to self-organized bilayer. According to X-ray diffraction results, it is confirmed that $L1_0$ superlattice structures of FePd were obtained from samples which were annealed above $350^{\circ}C$. Results of X-ray photoelectron spectroscopy depth-profile analysis showed that chemical composition is identical to deposition sequence. As a result, without additional etching processes, fabrication of chemically ordered FePd superlattice nano-dots was achieved.
Keywords
Self-organization; Agglomeration; FePd superlattice; Nano-dot;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science 285, 1551 (1999).   DOI   ScienceOn
2 C. Favazza, R. Kalyanaraman, and R. Sureshkumar, Nanotechnology 17, 4229 (2006).   DOI
3 L. Huang, S. J. Chey, and J. H. Weaver, Phys. Rev. Lett. 80, 4095 (1998).   DOI
4 G. D. Waddill, I. M. Vitomirov, C. M. Aldao, and J. H. Weaver, Phys. Rev. Lett. 62, 1568 (1989).   DOI
5 J. H. Weaver and G. D. Waddill, Science 251, 1444 (1991).   DOI
6 K. Jordan and I. V. Shvets, Appl. Phys. Lett. 88, 193111 (2006).   DOI
7 P.R. Gadkai, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, J. Vac. Sci. Technol. A23, 1152 (2005)
8 E. Shaffir, I. Riess, W. D. Kaplan, Acta Mater. 57, 248 (2009)   DOI
9 J. -U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, J. Appl. Phys. 84, 5686 (1998).   DOI
10 G. Schmid, Chem. Rev. 92, 1709 (1992).   DOI
11 W. Zhang, J. Nanopart. Res. 5, 323 (2003).   DOI
12 W. Fritzsche and T. A. Taton, Nanotechnology 14, R63 (2003).   DOI
13 S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).   DOI
14 H. -M. So, J. Kim, W.S. Yun, J. W. Park, J. -J. Kim, D. -J. Won, Y. Kang, and C. Lee, Phys E. 18, 243 (2003).   DOI   ScienceOn
15 Z. Wang and G. Chumanov, Adv. Mater. 15, 1285 (2003).   DOI
16 E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, Nano Lett. 5, 1065 (2005).   DOI
17 J. Lian, L. Wang, X. Sun, Q. Yu, and R. C. Ewing, Nano Lett. 6, 1047 (2006).   DOI