Browse > Article
http://dx.doi.org/10.14478/ace.2015.1034

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method  

Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University)
Park, Ju Young (Major in Polymer Science and Engineering, Kongju National University)
Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.3, 2015 , pp. 336-340 More about this Journal
Abstract
Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.
Keywords
Polycarbonate; Melt polymerization; Catalyst; GO modification;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Hammel, X. Tang, M. Trampert, T. Schmitt, K. Mauthner, A. Eder, and P. Potschke, Carbon nanofibers for composite applications, Carbon, 42, 1153-1158 (2004).   DOI   ScienceOn
2 J.-C. Huang, Carbon black filled conducting polymers and polymer blends, Advances in Polymer Technology, 21, 299-313 (2002).   DOI   ScienceOn
3 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and P. S. Ruoff, Graphene-based composite materials, Nature, 442, 282-286 (2006).   DOI   ScienceOn
4 P. J. Yoon, D. L. Hunter, and D. R. Paul, Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties, Polymer, 44, 5323-5339 (2003).   DOI   ScienceOn
5 S. J. Choi, K. H. Yoon, I. H. Hwang, C. Y. Lee, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Effect of solvent extraction on the low molecular weight and volatile organic compounds of polycarbonate, Appl. Chem. Eng., 21, 532-536 (2010).
6 M. Yoonessi and J. R. Gaier, Highly conductive multifunctional graphene polycarbonate nanocomposites, ACS Nano, 12, 7211-7220 (2010).
7 J. R. Potts, S. Murali, Y. Zhu, X. Zhao, and R. S. Ruoff, Microwave-exfoliated graphite oxide/polycarbonate composites, Macromolecules, 44, 6488-6495 (2011).   DOI   ScienceOn
8 A. S. Wajid, H. S. T. Ahmed, S. Das, F. Irin, A. F. Jankowski, and M. J. Green, High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties, Macromol. Mater. Eng., 298, 339-347 (2013).   DOI   ScienceOn
9 Z. Liu, J. Liu, L. Cui, R. Wang, X. Luo, C. J. Barrow, and W. Yang, Preparation of graphene/polymer composites by direct exfoliation of graphite in functionalised block copolymer matrix, Carbon, 51, 148-155 (2013).   DOI   ScienceOn
10 C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Angew. Che. Int. Ed., 48, 7752-7777 (2009).   DOI   ScienceOn
11 B. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010).   DOI   ScienceOn
12 A. Yasmin, J.-J. Luo, and I. M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites, Compos. Sci. Technol., 66, 1182-1189 (2006).   DOI   ScienceOn
13 S. T. Kim and H. J. Choi, Synthesis and characterization of multi-walled carbon nanotube/poly(methyl methacrylate) composites prepared by in-situ dispersion polymerization, Applied Chemistry, 9, 13-16 (2005).
14 P. Ding, S. Su, N. Song, S. Tang, Y. Liu, and L. Shi, Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process, Carbon, 66, 576-584 (2014).   DOI   ScienceOn
15 B. Shen, W. Zhai, M. Tao, D. Lu, and W. Zheng, Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending, Compos. Sci. Technol., 86, 109-116 (2013).   DOI   ScienceOn
16 D. J. Lohse, S. T. Milner, L. J. Fetters, and M. Xenidou, and M. K. Lyon, Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior, Macromolecules, 35, 3066-3075 (2002).   DOI   ScienceOn
17 S. Yun, H. Im, and J. Kim, Dispersity and electro-conductivity of PU grafted MWCNT/PU composite via simple blending method, Appl. Chem. Eng., 21, 500-504 (2010).
18 Y. T. Sung and W. N. Kim, Properties of polymer/carbon nanotube composites, Prospectives of Industrial Chemistry, 9, 37-43 (2006).