• 제목/요약/키워드: ACETYLENE

Search Result 326, Processing Time 0.036 seconds

Development of Carbon-based Adsorbent for Acetylene Separation Using Response Surface Method (반응 표면 분석법을 활용한 Acetylene 분리용 탄소기반 흡착제 개발)

  • Choi, Minjung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.29-33
    • /
    • 2019
  • Carbon nanotubes, nanofibers and powders were used for acetylene adsorption experiments. A total of 15 different experiments were designed by 3-level of Box-Behnken Design (BBD) with 3 factors including the Pd concentration of 0 to 5%, adsorption temperature of 30 to $80^{\circ}C$ and $C_2H_2/CO_2$ of 3 to 10. Based on those data, a second order polynomial regression analysis was used to derive the adsorption amount prediction equation according to operating conditions. The adsorption temperature showed the greatest influence index while the $C_2H_2/CO_2$ ratio showed the smallest according to the F-value measurement of the ANOVA analysis. However, there was little interaction between major factors. In the adsorption optimization analysis, a 22.0 mmol/g was adsorbed under the conditions of Pd concentration of 3.0%, adsorption temperature of $47^{\circ}C$ and $C_2H_2/CO_2$ of 10 with 95.9% accuracy.

Hydrogen Production by Pyrolysis of Natural Gas : Thermodynamic Analysis (천연가스 열분해에 의한 수소 생산 : 열역학적 해석)

  • Yoon, Y.H.;Park, N.K.;Chang, W.C.;Lee, T.J.;Hur, T.;Lee, B.G.;Baek, Y.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Methane can be converted directly to hydrogen by pyrolysis. The reaction is highly endothemic and heat must be supplied at high temperatures. Gibbs free energy minimization calculations have been carried out for the methane pyrolysis to determine equilibrium products. The calculation parameters are the temperature, the initial H/C ratio, the pressure and Gibbs energies of each substance. Methane, ethylene, acetylene, benzene, naphthalene, and hydrogen are the main products. Excluding hydrogen, it is observed that ethylene and aromatics(benzene+naphthalene) are predominant products below 1400K, whereas acetylene is significantly formed above 1400K. Hydrogen dilution increases the selectivities for ethylene and acetylene and decreases the selectivity for aromatics. Increasing the pressure also decreases the decomposition of methane.

Analysis of Explosion Energy related to the Cause of Tianjin Explosion Accident in China (중국 텐진항 폭발사고 원인과 관련된 폭발 에너지 분석)

  • Kwon, Sangki;Kim, Ha Yung
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • On August 12, 2015, two huge explosions were accidently happened in Tianjin port, China. The explosion energies of the two explosions were similar to those of TNT 3 tons and TNT 21 tons. Until now, the cause of the explosions was not clearly announced but some guesses of the cause were released. One of the possible cause of the explosion is the generation of explosive acetylene gas from the chemical reaction between $CaC_2$ and spraying water to extinguish fire happened at the storage site of different chemical compounds. The explosion of acetylene gas might ignite the explosion of 800 tons of ammonium nitrate. In this study, the explosion due to the scenario was analyzed in order to check that such a chemical reaction can produce the huge explosion observed at the Tianjin accident.

Thermal and UV Curing of Vacuum Deposited Film of Acetylene Substituted Fluorenes (아세틸렌기가 치환된 플루오렌 증착박막의 열 및 자외선 경화)

  • 정상현;김정수;강영구;이창진
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.327-333
    • /
    • 2001
  • Acetylene substituted fluorenes such as 2-ethynylfluorene and 2,7-diethynyl-fluorene were synthesized and thin films were prepared by the vacuum deposition. Curing of these fluorene derivatives could be achieved by heat treatment and UV irradiation. The curing temperature of 2-ethynylfluorene and 2,7-diethynylfluorene were found to be 231 and $198^{\circ}C$, respectively. The cured poly(2-ethynylfluorene) and poly(2,7-diethynylfluorene) started to decompose at 280 and $ 385^{\circ}C$, respectively. Fluorescent characteristics of the cured films were similar to those of monomers, but fluorescent efficiency of the film was decreased about 3 to 10 fold.

  • PDF

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

A cutting Experiments the materials by using heat source of the Hybrid Propulsion System Combustion (하이브리드 로켓 추진장치 연소 열원을 이용한 절단기초실험)

  • Yoo, Doc-Koon;Kim, Soo-Jong;Kim, Jin-Kon;Koo, Ja-Ye;Moon, Hee-Jang;Lee, Bo-Young;Kil, Seong-Mahn;Oh, Jae-Young;Kuk, Tae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.344-349
    • /
    • 2003
  • The purpose of this study is to ascertain the ability of New type cutter using Hybrid Rocket Propulsion System to cut normal carbon steel and also compound metal like stainless steel which cannot be cut by regular oxygen-acetylene cutter. To compare cutting performance, Two different types of experiment with oxygen-acetylene and Hybrid Combustion cutters were performed. As a result, Hybrid Combustion cutter is used to cut both carbon steel and stainless steel with cutting speed of 400mm/min(carbon steel) and 250mm/min(stainless steel). Otherwise, oxygen-acetylene cutter can be used to cut only carbon steel with cutting speed of 500 $^{\sim}$ 700mm/min. The possibility of Hybrid Combustion cutter as a cutting machine was confirmed.

  • PDF

Electrochemistry and Determination of 1-Naphthylacetic Acid Using an Acetylene Black Film Modified Electrode

  • Huang, Wensheng;Qu, Wanyun;Zhu, Dazhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1323-1325
    • /
    • 2008
  • The acetylene black (AB) was dispersed into water in the presence of dihexadecyl hydrogen phosphate (DHP) via ultrasonication, resulting in a stable and well-distributed AB/DHP suspension. After evaporation of water, an AB/DHP composite film-modified electrode was prepared. The electrochemical responses of $K_3$[Fe$(CN)_6$] at the unmodified electrode, DHP film-modified electrode and AB/DHP film-modified electrode were investigated. It is found that the AB/DHP film-modified electrode possesses larger surface area and electron transfer rate constant. Furthermore, the electrochemical behaviors of 1-naphthylacetic acid (NAA) were examined. At the AB/DHP film-modified electrode, the oxidation peak current of NAA remarkably increases. Based on this, a sensitive and convenient electrochemical method was proposed for the determination of NAA. The linear range is in the range from $4.0 {\times} 10^{-8}\;to\;5.0 {\times} 10^{-6}$ mol $L^{-1}$, and the detection limit is $1.0 {\times} 10^{-8}$ mol $L^{-1}$. Finally, this new sensing method was employed to determine NAA in several soil samples.

Analysis on Thermochemical Erosion Properties for Thermal Insulation Materials of Graphite Nozzle Throat (흑연 노즐목 내열재의 열화학적 침식 특성 분석)

  • Kim, Young-in;Lee, Soo-yong
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • In the solid rocket motor (SRM), a thrust of rocket is generated by a nozzle so it is very important device. The nozzle of SRM is a condition of high temperature and high pressure so occurs the erosion by combustion gas. The liquid rocket propulsion systems (LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. This paper deal with the development of the oxy-acetylene torch tester and investigate the thermochemical erosion properties for the thermal insulation materials of the graphite rocket nozzle throat through the experiment. The results of experiments are compared with the results of Theoretical model and identify the key factors affecting of erosion. The results is in good agreement with the experimental data.

Plasma Etching and Polymerization of Carbon Fiber (플라즈마 에칭과 중합에 의한 탄소섬유의 표면 개질)

  • H. M. Kang;Kim, N. I.;T. H. Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.143-146
    • /
    • 2002
  • Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance adhesion to vinyl ester resin. The gases utilized for the plasma etching were Ar, $N_2 and O_2$, while the monomers used for the plasma polymerization coating were acetylene, butadiene and acrylonitrile. The conditions for the plasma etching and the plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Among the treatment conditions, the combination of Ar plasma etching and acetylene plasma polymerization provided greatly improved interfacial shear strength (IFSS) of 69MPa compared to 43MPa with as-received carbon fiber. Based on the SEM analysis of failure surface and load-displacement curve, it was assume that the failure might be occurred at the carbon fiber and plasma polymer coating. The plasma etched and plasma polymer coated carbon fibers were subjected to analysis with SEM, XPS, FT-IR or Alpha-Step, and dynamic contact angles and tensile strengths were also evaluated. Plasma polymer coatings did not change tensile strength and surface roughness of fibers, but decreased water contact angle except butadiene plasma polymer coating, possibly owing to the functional groups introduced, as evidenced by FT-IR and XPS.

  • PDF

1,1-Difluoroethane Synthesis from Acetylene over Fluorinated γ-Al2O3 (불화된 γ-Al2O3상에서 아세틸렌으로부터 1,1-difluoroethane의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.629-633
    • /
    • 1998
  • The synthesis of 1,1-difluoroethane from acetylene as a function of HF/acetylene ratio, contact time and reaction temperature was studied on a fluorinated ${\gamma}-Al_2O_3$. The fluorination of ${\gamma}-Al_2O_3$ was treated with pure HF gas at high temperature. The crystallinity, the porosity, and the acid properties of the prepared samples were examined using XRD, the nitrogen adsorption, pyridine-IR and ammonia-TPD respectively. The activity was enhanced by further fluorination of alumina. The fraction of 1,1-difluoroethane was obtained above 90% at reaction temperature of about $200^{\circ}C$. The ratio of 1,1-difluoroethane to vinylfluoride over fluorinated ${\gamma}-Al_2O_3$ catalyst was increased with the mole ratio of HF/acetylene and contact time, and was found to be the highest ratio at reaction temperature of $200^{\circ}C$.

  • PDF