Browse > Article
http://dx.doi.org/10.14478/ace.2018.1095

Development of Carbon-based Adsorbent for Acetylene Separation Using Response Surface Method  

Choi, Minjung (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
Publication Information
Applied Chemistry for Engineering / v.30, no.1, 2019 , pp. 29-33 More about this Journal
Abstract
Carbon nanotubes, nanofibers and powders were used for acetylene adsorption experiments. A total of 15 different experiments were designed by 3-level of Box-Behnken Design (BBD) with 3 factors including the Pd concentration of 0 to 5%, adsorption temperature of 30 to $80^{\circ}C$ and $C_2H_2/CO_2$ of 3 to 10. Based on those data, a second order polynomial regression analysis was used to derive the adsorption amount prediction equation according to operating conditions. The adsorption temperature showed the greatest influence index while the $C_2H_2/CO_2$ ratio showed the smallest according to the F-value measurement of the ANOVA analysis. However, there was little interaction between major factors. In the adsorption optimization analysis, a 22.0 mmol/g was adsorbed under the conditions of Pd concentration of 3.0%, adsorption temperature of $47^{\circ}C$ and $C_2H_2/CO_2$ of 10 with 95.9% accuracy.
Keywords
Response surface method; Acetylene adsorption; Pd/C Adsorbent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Boese, M. T. Kirchner, W. E. Billups, and L. R. Norman, Cocrystallization with acetylene: Molecular complexes with acetone and dimethyl sulfoxide, Angew. Chem. Int. Ed., 42, 1961-1963 (2003).   DOI
2 D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed, and T. L. Thomas, Crystalline Zeolites, I. The properties of a new synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5963-5972 (1956).   DOI
3 A. A. Amaro and K. Seff, Crystal structure of an acetylene sorption complex of zeolite 4A, J. Phys. Chem., 77, 906-910 (1973).   DOI
4 C. R. Reid and K. M. Thomas, Adsorption of gases on a carbon molecular sieve used for air separation: Linear adsorptives as probes for kinetic selectivity, Langmuir, 15, 3206-3218 (1999).   DOI
5 B. L. Newalkar, N. V. Choudary, P. Kumar, S. Komarneni, and T. S. G. Bhat, Exploring the potential of mesoporous silica, SBA-15, as an adsorbent for light hydrocarbon separation, Chem. Mater., 14, 304-309 (2002).   DOI
6 R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments, with Applications to Engineering and Science, 2nd ed., 568-597, Wiley-Interscience, New Jersey, USA (2003).
7 B. L. Newalkar, N. V. Choudary, U. T. Turaga, R. P. Vijayalakshmi, P. Kumar, S. Komarneni, and T. S. G. Bhat, Adsorption of light hydrocarbons on HMS type mesoporous silica, Microporous Mesoporous Mater., 65, 267-276 (2003).   DOI
8 D. H. Jo, K.-S. Cho, C. G. Park, and S. H. Kim, Effects of inorganic-organic additives on $CO_{2}$ adsorption of activated carbon, Korean Chem. Eng. Res., 50, 885-559 (2012).   DOI
9 R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, Probability and Statistics for Engineers and Scientists, 9th ed., 639-652, Prentice Hall, Boston, USA (2012).
10 M. Roosta, M. Ghaedi, A. Daneshfar, and R. Sahraei, Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon, Spectrochim. Acta A, 122, 223-231 (2014).   DOI
11 M. Ghaedi, E. Alam Barakat, A. Asfaram, B. Mirtamizdoust, A. A. Bazrafshan, and S. Hajati, Efficient adsorption of Europhtal onto activated carbon modified with ligands (1E,2E)-1,2-bis(pyridin-4-ylmethylene)hydrazine (M) and (1E,2E)-1,2-bis(pyridin-3-ylmethylene) hydrazine (SCH-4); response surface methodology, RSC Adv., 5, 42376-42387 (2015).   DOI
12 D. G. Samsonenko, H. Kim, Y. Sun, G.-H. Kim, H. S. Lee, and K. Kim, Microporous magnesium and manganese formates for acetylene storage and separation, Chem. Asian J., 2, 484-488 (2007).   DOI
13 S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos, Box-Behnken design: An alternative for the optimization of analytical methods, Anal. Chim. Acta, 597, 179-186 (2007).   DOI
14 A. Kumar, B. Prasad, and I. M. Mishra, Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design, J. Hazard. Mater., 150, 174-182 (2008).   DOI