• Title/Summary/Keyword: ACE-inhibitory activity

Search Result 377, Processing Time 0.027 seconds

Antihypertensive peptides from whey proteins fermented by lactic acid bacteria

  • Daliri, Eric Banan-Mwine;Lee, Byong H.;Park, Byun-Jae;Kim, Se-Hun;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1781-1789
    • /
    • 2018
  • In this study, whey proteins were fermented with 34 lactic acid bacteria for 48 h at $37^{\circ}C$ and their ability to inhibit angiotensin 1-converting enzyme (ACE) activity were compared. All the lactic acid bacteria displayed varying proteolytic abilities in whey. Their fermentates also displayed varying abilities to inhibit ACE in vitro. Seven fermentates showed strong ACE inhibitory abilities between $84.70{\pm}0.67$ and $52.40{\pm}2.1%$ with $IC_{50}$ values between $19.78{\pm}1.73$ and $2.13{\pm}0.7mg/ml$. Pediococcus acidilactici SDL1414 showed the strongest ACE inhibitory activity of $84.7{\pm}0.67%$ ($IC_{50}=19.78{\pm}1.73{\mu}g/ml$). Mass spectrometry revealed that more than half (57.7%) of the low molecular weight peptides (< 7 kDa) in the P. acidilactici SDL1414 fermented samples were ACE inhibitory peptides. Our results show that P. acidilactici SDL1414 could be used as a starter culture in the dairy industry to develop antihypertensive functional foods for hypertension management.

Physiological Functionalities of Vitis hybrid (Sheridan)-Rubus coreanus Red Wine Made by Saccharomyces cerevisiae

  • Jang, Jeong-Hoon;Kim, Jae-Ho;Ahn, Byung-Hak;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.109-112
    • /
    • 2011
  • Vitis hybrid (Sheridan)-Robus coreanus red wine was vinified by fermentation of a mixture of Vitis hybrid and Robus coreanus must at $25^{\circ}C$ for 10 days. The Vitis hybrid-Robus coreanus red wine had ethanol contents of 10.9%. It had high antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity of 57.8% and antioxidant activity of 64.8%. Changes in the physicochemical properties and functionality of the Vitis hybrid-Robus coreanus red wine was investigated during a post-fermentation period of three months. The ACE inhibitory activity of the red wine increased as the post-fermentation period prolonged, and showed the highest ACE inhibitory activity of 70.4% 60 days post-fermentation. However, the antioxidant activity declined significantly to 47.2% during the post-fermentation period of 60 days. In terms of sensory evaluation, the Vitis hybrid-Robus coreanus red wine had the best acceptability 60 days post-fermentation.

Screening of Lactic Acid Bacteria as Starter Culture for Making Fermented Sausage (발효 소시지 제조를 위한 기능성 유산균의 선발)

  • Han, Soo-Min;Kim, Young-Joo;Lee, Hong-Chul;Chin, Koo-Bok;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.511-516
    • /
    • 2006
  • The objectives of this study was to compare the probiotic characteristics of lactic acid bacteria (LAB) for their ability to assimilate cholesterol, production of bacteriocin, inhibition of angiotensin I-converting enzyme (ACE), and viability under artificial gastrointestinal fluids. Among tested lactic acid bacteria, L167 strain exhibited the highest ACE inhibitory activity (58.75%). The production of ACE inhibitory peptide derived from fermented milk by L167 strain started at the beginning of stationary phase with maximum activity occurring late of the stationary phase. The highest ACE inhibitory activity was observed at 20 h in 10% skim milk medium. L155 strain exhibited cholesterol assimilation activity compared with probiotic strains such as Lactobacillus acidophilus ATCC 43121. With addition of bacteriocin culture, viable cells of Staphylococcus aureus in fermented sausage were slightly decreased during storage. Among selected strains of LAB, 3 strains weve identified as L. plantarum (L155, L165, L167), and two strains were identified as Pediococcus damnosus (L12) and L. paracasei ssp. paracasei (P113) by use of API carbohydrate fermentation pattern and physiological tests.

Angiotensin I-Converting Enzyme Inhibitory Activity of the ${\kappa}-Casein$ Fragments Hydrolysated by Chymosin, Pepsin, and Trypsin (${\kappa}-Casein$의 Chymosin, Pepsin 및 Trypsin 가수분해물에 대한 안지오텐신 변환효소 저해효과의 탐색)

  • Oh, Se-Jong;Kim, Sae-Hun;Kim, Sang-Kyo;Baek, Young-Jin;Cho, Kyung-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1316-1318
    • /
    • 1997
  • The isolated ${\kappa}-Casein$ on gel permeation chromatography was hydrolyzed by chymosin, trypsin, and pepsin. The 3% TCA soluble portion of the hydrolysates were dialyzed on the angiotensin-I converting enzyme (ACE) inhibition rate (%,) and inhibitory activity $(IC_{50})$ were determined. The trypsin hydrolysate exhibited the highest ACE inhibition rate while the chymosin hydrolysation showed the lowest activity. The hydrolysate was dialyzed using dialysis membrane with various molecular cut-offs, and $IC_{50}$ was determined. As the pore size of the dialysis tubing increased, the ACE inhibitory activity decreased.

  • PDF

Inhibitory Effects of Eucommia ulmoides Extract on Angiotensin Converting Enzyme (두충차 추출물의 Angiotensin Converting Enzyme 저해효과)

  • Shon, Mi-Yae;Nam, Sang-Hae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1511-1516
    • /
    • 2007
  • To assess a potential possibility of Eucommia ulmoides (EU) as a functional food, anti-hypertensive materials of EU were isolated by silica gel column, thin layer and reverse phase column chromatographies, and then ACE (angiotensin-converting emzyme) inhibitory activities of different parts (leaf, bark, and stem) were investigated. The isolated compound, 8A, was pinoresinol-4,4'-di-O-${\beta}$-D-glucoside (below PDG) originating from Eucommial Cortex and its purity was 95.64%. Of all the samples tested, PDG in raw bark and roasted bark was the highest level at 135.13 mg% and 163.67 mg%, respectively. In ACE inhibitory activity at 10 mg/mL of EU extracts, roasted leaf, raw bark, and roasted bark were 77.56%, 75.73%, and 75.73%, respectively. ACE activities at 1 mg/mL were shown to be 91.87% for PDG, 97.06% for $Enalapril^{(R)}$, and 90.32% for $Captopril^{(R)}$.

Peptic Hydrolysate of Porcine Crude Myosin Has Many Active Fractions Inhibiting Angiotensin I-converting Enzyme

  • Katayama, Kazunori;Fuchu, Hidetaka;Sugiyama, Masaaki;Kawahara, Satoshi;Yamauchi, Kiyoshi;Kawamura, Yukio;Muguruma, Michio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1384-1389
    • /
    • 2003
  • In order to clarify one of the biological functions of pork, we investigated whether a peptic hydrolysate of denatured porcine crude myosin showed inhibitory activity against angiotensin I-converting enzyme (ACE), which contributed to hypertension. Our results indicated that this hydrolysate showed relatively strong activity, and we therefore attempted to separate the involved peptides, which were considered to be active substances. To isolate these active peptides, the hydrolysate was separated using a solidphase separation, gel filtration high-performance liquid chromatography (HPLC), and two kinds of reverse phase HPLC. In each stage of separation, many fractions were detected, almost all of which showed ACE inhibitory activity. Thus, we suggested that the activity of the hydrolysate as a whole was a result of the activities of the many individual peptides. Six peaks were distinguished, with yields from 34 to 596 ppm of original crude myosin. In addition to the six peaks, many other active fractions were found throughout the separation steps, strongly suggesting that whole porcine crude myosin itself had ACE inhibitory activity. Moreover, pork as food was considered to function as an ACE inhibitory material in vivo, because pork proteins consist primarily of crude myosin, which included almost all the myofibrillar structural proteins.

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Saccharomyces cerevisiae

  • KIM, JAE-HO;LEE, DAE-HYOUNG;JEONG, SEOUNG-CHAN;CHUNG, KUN-SUB;LEE, JONG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1318-1323
    • /
    • 2004
  • This study describes the purification and characterization of a novel antihypertensive angiotensin 1­converting enzyme (ACE) inhibitory peptide from Saccharomyces cerevisiae. Maximal production of the ACE inhibitor from Saccharomyces cerevisiae was obtained from 24 h of cultivation at $30^{\circ}C$ and its ACE inhibitory activity was increased by about 1.5 times after treatment of the cell-free extract with pepsin. After the purification of ACE inhibitory peptides with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an $IC_{50}$ of 0.07 mg and $3.5\%$ yield was obtained. The purified peptide was a novel decapeptide, showing very low similarity to other ACE inhibitory peptide sequences, and its amino acid sequence was Tyr-Asp-Gly-Gly-Val-Phe-Arg-Val-Tyr-Thr. The purified inhibitor competitively inhibited ACE and also showed a clear antihypertensive effect in spontaneously hypertensive rats (SHR) at a dosage of 1 mg/kg body weight.

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Malassezia pachydermatis G-14

  • Jeong, Seung-Chan;Kim, Jae-Ho;Kim, Na-Mi;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.142-146
    • /
    • 2005
  • To produce a novel antihypertensive angiotensin I-converting enzyme (ACE) inhibitor from yeast, a yeast isolate, designated G-14 showing the highest ACE inhibitory activity was obtained and identified as Malassezia pachydermatis based on morphological, biochemical and cultural characteristics. The maximal extracellular ACE inhibitor production was obtained from M. pachydermatis G-14 when the strain was cultured in YEPD medium containing 0.5% yeast extract, 3.0% peptone and 2.0% glucose at $30^{\circ}C$ for 24 h and the final ACE inhibitory activity was 48.9% under the above condition.

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor-Enriched Edible Yeast Using Gugija (Lycium chinesis Mill)

  • Kim, Ran;Jang, Jeong-Hoon;Park, Won-Jong;Kim, Ha-Kun;Kwak, Hahn-Shik;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.206-209
    • /
    • 2010
  • To produce bioactive compound enriched yeast using medicinal Gugiga (Lycium chinensis Mill), several edible Saccharomyces species were cultured in Gugija extracts added yeast extract, peptone and dextrose medium (GE - YEPD medium) at $30^{\circ}C$ for 24 hr, and their growth were determined. Growth of Saccharomyces cerevisiae K-7 and Sacchromyces cerevisiae ACTC 7904 were better than those of the other yeasts. Two yeasts were selected and then determined their some physiological functionalities after cultivated the yeasts in the GE - YEPD medium and compared those grown on YEPD medium. Antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity of S. cerevisiae K-7 grown on GE - YEPD medium was about 20% higher than that grown on YEPD medium. Superoxide dismutase-like activity of S. cerevisiae ACTC 7904 was also about 12% more high. However, the other physiological functionalities were almost same or lower. Optimal addition concentration of Gugija extract was 10%, and maximally growth and ACE inhibitory activity of S. cerevisiae K-7 were shown when the strain was cultured in 10% Gugija extracts containing YEPD medium at $30^{\circ}C$ for 12 hr.

ACE Inhibitory and Antioxidative Activities of Silkworm Larvae (Bombyx mori) Hydrolysate (번데기 가수분해물의 ACE 저해활성과 항산화활성)

  • Yu, Jung-Sik;Woo, Koan-Sik;Hwang, In-Guk;Lee, Youn-Ri;Kang, Tae-Su;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.136-140
    • /
    • 2008
  • In order to utilize the silkworm larvae (Bombyx mori) protein, defatted silkworm protein was hydrolysed by four enzymes (pepsin, trypsin, neutrase and alcalase) at various hydrolysis times (6, 12, 18, 24 and 30 hr) and suspension concentrations (2, 5, 10, 15 and 20%). Protein solubility index, ACE (angiotensin converting enzyme) inhibitory activity and antioxidative activity of silkworm protein hydrolysates were investigated. The optimum condition of hydrolysis was 10% suspension concentration and 18 hr. Protein solubility index of trypsin treatment was higher than other enzyme treatments. ACE inhibitory activity and $IC_{50}$ value of antioxidative activity of neutrase treatment were 86.16% at $100\;{\mu}g/mL$ and $352.75\;{\mu}g/mL$, respectively; also, these values were higher than other enzyme treatments.