• 제목/요약/키워드: AC source

검색결과 723건 처리시간 0.038초

에너지 회수가 가능한 2차전지 충방전시스템용 3상 양방향 AC-DC 컨버터 (Energy Regenerative 3-Phase Bidirectional AC-DC Converter for the Secondary Battery Charge/Discharge System)

  • 임승범;원화영;채수용;서영민;이준영;고종선;홍순찬
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.259-261
    • /
    • 2008
  • The electronic products such as laptop PC, cellular phone, robots and etc. need the DC power source. Recently, the secondary battery is frequently used as the portable DC power source and it needs forming process. In this paper, we proposed the bidirectional converter that the battery can be charged with high power factor and the discharged energy is regenerated into AC power source. In the charging mode, the converter acts as the boost rectifier. And the AC input current is controlled in phase with the AC input voltage. As a result, the power factor is improved nearly to unity. In the discharging mode, the DC power of battery wasted in resistor is regenerated to the AC bus line. Finally, the validity of the proposed bidirectional converter is verified by computer simulations and experimentation.

  • PDF

교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어 (A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors)

  • 한근우;정영국;임영철
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

Quasi Z-소스 동적 전압 보상기를 사용한 배전계통의 전압변동 보상 (Voltage Variation Compensation of Power Distribution System Using a Quasi Z-Source Dynamic Voltage Restorer)

  • 엄준현;정영국;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.400-401
    • /
    • 2011
  • 본 논문에서는 단상 Quasi Z-source AC/AC converter 2대의 출력을 직렬로 연결하여 6.6[kV]/60[Hz]의 배전계통의 전압변동을 보상하는 시스템을 제안하였다. 제안된 시스템은 기존의 단상 Quasi Z-source AC/AC converter의 전압변동 보상기가 보상 못 하는 구간, 즉 배전계통에서 많이 발생하는 50[%] 미만의 전압 sag를 보상할 수 있는 장점이 있다. PSIM시뮬레이션에 의하여, 제안된 방법은 정상전압에 대하여 연속적으로 전압변동이 발생하여도 보상할 수 있었다.

  • PDF

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

42″ AC-PDP의 방사특성에 대한 연구 (Investigation on Radiation Characteristics of 42″ AC-PDP)

  • 임헌용;김민석;박동욱;이정해
    • 한국전자파학회논문지
    • /
    • 제15권9호
    • /
    • pp.841-847
    • /
    • 2004
  • EMI emission characteristics of 42" AC-PDP panel are investigated in this paper. First, EMI emission source was modeled the scan electrode and the sustain electrode to a simple electric and magnetic dipole type radiator. Second, EMI emission source was modeled as reconfigured the scan electrode and the sustain electrode. The primary source of EMI emission was investigated using FEM calculation of the wave impedance and 3 dB beam width. The third. the EMI emission level was estimated using the measured sustain electrode current. Also, EMI emission level of 42" AC-PDP was measured. The results show that the calculated EMI emission level from the simple electric dipole model was shown to agree with that from the corresponding FEM simulation.

인버터 저항용접기의 전력효율 향상을 위한 AC/DC 컨버터 설계에 관한 연구 (A Study on AC/DC Converter Design of High Efficiency for Inverter Resistance Welder)

  • 곽동걸;정원석;강우철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.40-41
    • /
    • 2016
  • The inverter resistance welder requires AC/DC converter of high efficiency because the converter changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of converter decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a high efficiency AC/DC converter for inverter resistance welder. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit. As a result, the proposed AC/DC converter obtains low switching power loss and high efficiency.

  • PDF

AC Chopper를 이용한 다등용 조광제어 시스템에 관한 연구 (Dimming Control System for Multi-Fluorescent Lamp Using AC Chopper Technique)

  • 정동열;박종연
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권4호
    • /
    • pp.177-182
    • /
    • 2003
  • We have proposed the dimming controller using the AC chopper technique. The AC chopper changes the amplitude of the input source voltage with the same frequency. The conventional dimming controller is operated by controlling voltage phase with the triac. It has bad characteristics of the input current THD and the input power factor But the dimming controller using the ac chopper technique has a low current THD and a good power factor. The developed dimming controller is consist of the IGBT and the low pass filter. The system is operated by the variation circuit of the input source voltage and the microprocessor.

AC Chopper를 이용한 다등용 조광제어 시스템에 관한 연구 (Dimming Control System for Multi-Fluorescent Lamp Using AC Chopper Technique)

  • 정동열;박종연
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권4호
    • /
    • pp.177-177
    • /
    • 2003
  • We have proposed the dimming controller using the AC chopper technique. The AC chopper changes the amplitude of the input source voltage with the same frequency. The conventional dimming controller is operated by controlling voltage phase with the triac. It has bad characteristics of the input current THD and the input power factor But the dimming controller using the ac chopper technique has a low current THD and a good power factor. The developed dimming controller is consist of the IGBT and the low pass filter. The system is operated by the variation circuit of the input source voltage and the microprocessor.

AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 라인 인터렉티브 무정전전원장치 시스템 (A Novel Three-Phase Line-Interactive UPS System having AC Line Reactor and Parallel-Series Active Filters)

  • 지준근
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.193-197
    • /
    • 2004
  • The four-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. In this paper a novel line interactive Uninterruptible Power Supply(UPS) using the two four-leg VSCs is proposed. One VSC is in parallel with the ac link reactor of the power source side, and the other is in series with the load. The parallel four-leg voltage source inverter controls the three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series four-leg voltage source inverter compensates the line voltage and allows it to be balanced and harmonic-free. Both of the parallel and series four-leg voltage source inverters always act as independently controllable voltage sources, so that the three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulations results.

  • PDF

간단한 듀티비 제어기법에 의한 3상 Quasi Z-소스 AC/AC 전력 변환기 (Three Phase Quasi Z-source AC/AC Power Converter Using a Simple Duty Cycle Control Scheme)

  • 엄준현;정영국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.435-436
    • /
    • 2016
  • 본 논문에서는 3상 Quasi Z-소스 AC/AC 전력변환기를 제안한다. 제안된 전력변환기는 3대의 단상 Quasi Z-소스 AC/AC 컨버터로 구성되어 있으며, 간단한 듀티 비 제어만으로도 동상 및 역상의 벅-부스트 출력 전압의 발생이 가능하다. 제안된 방식은 PSIM 시뮬레이션을 통하여 타당성을 확인하였다.

  • PDF