• Title/Summary/Keyword: AC servo motor control

Search Result 153, Processing Time 0.029 seconds

The speed control system of an induction type a.c servo motor by vector control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 1989
  • In recent years, a.c servo motors have been gradually replacing d.c sevo motors in various high-performance demanded aplications such as machine tools and industrial robots. In particular, the high-performance slip-frequency control of an induction motor, which is often called the vector control, is considered one of the best a.c drive. In this paper, the transient state equation and vector control algrithms of an induction motor are described mathematically by using the two-axis theory(d-q coordinates). According to the result of these algorithms, we scheme the speed control system for an induction type ac servo motor in which vector control is adopted to give tha a.c motor high performance. Motor drive is a PWM inverter using power MOS-FET, and is controlled in order to let the actual input current of the motor track the current reference obtained from a microcomputer(8086 cpu). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is possible.

  • PDF

AC Servo Motor Control Using Software PWM (Software PWM을 이용한 AC Servo Motor 제어기의 구현)

  • Hong, Ki-Chul;Nam, Kwang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.245-247
    • /
    • 1992
  • We utilize as a processor TMS320C25 (Texas Instrument) in making a driver for a 4 pole PM synchronous servo motor. TMS320C25 has a 32bit ALU and a 16 bit hardware multiplier, and the maximum instruction execution rate is 10MIPS at 40MHz. We adopted a space vector modulation PWM method. An interesting point of this work is that PWM wave is generated by utilizing timer interrupts. Hence, in the rest of time the processor can take care of the other routine such as Park's coordinate transformation and the computation required in the feedback loops. Thus, it mates the hardware circuit very simple. Due to the decrease in the number of components, the motor drive system becomes more fault-tolerant and cost-optimized. Also, more flexibility is gained in changing the control parameters.

  • PDF

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

A Study on Vector Control of Permanent Magnet Synchronous Motor Using TMX320F2812 (TMX320F2812를 이용한 영구자석형 동기 전동기의 벡터 제어에 관한 연구)

  • 홍선기
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.123-128
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has perip -heral devices to control AC servo system, the servo technology has met a new development opportunity. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F2812 version C which has the performance of fast speed, 150MIPS, and rich peripheral interface is used. Also space vector pulse width modulation (SVPWM) and the digital PI control are implemented to the servo control system.

Position Control for Induction Servo Motors Using a Theory of Variable Structure Control (가변구조제어 이론을 이용한 유도 서보 전동기의 위치제어)

  • Hong Soon-Ill;Hong Jeng-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • This paper describes the application of sliding mode control based on the variable structure control(VSC) concept for high-performance position control of an induction servo motor A design method based on external load parameters has been developed for the robust control of AC induction servo drive. Also, a slip frequency vector control with software current control technique has been adopted to achieve fast response of an induction motor drive The position control scheme is comprised of a variable structure controller and slip frequency vector control for inverter fed induction servo motor. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft inertia, viscous friction and torque disturbance.

A Study on AC Servo Motor Speed Control with Fuzzy Controller (퍼지제어기를 이용한 AC Servo Motor의 속도제어에 관한 연구)

  • Yoon, Hyung-Sang;Cha, In-Su;Lee, Kwun-Hyun;Park, Hae-Am
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.344-346
    • /
    • 1995
  • In this paper a drive strategy of AC Servo Motor using Fuzzy method was proposed. Since the transfer function of the plant is nonlinear and very complicated, there are difficultly in driving the system with real time. The performance of out method is confirmed by computer simulation and experimental results. The high performance and high accuracy of the driving system. Fuzzy is designed and proposed.

  • PDF

An Implementation of Vector Control of AC Servo Motor based on Optical-EtherCAT Network (광-ETherCAT 네트워크 기반 PMSM의 벡터제어 구현)

  • Kim, Yong-Jin;Kim, Kwang-Heon;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.583-588
    • /
    • 2013
  • In this paper we propose implement technique of vector current control in order to verify performance of an AC servo driver that is able to easy control of motion with multi-axis in the robot. In doing do, we have developed the AC servo driver to driving PMSM, and then we confirm that this driver whether operating or not normally by controlling of vector current. The vector current control was performed at the no load condition in PMSM. Then we compare command control and tracking control. As a result of verification, we recognize we get a satisfactory result.

Speed Control of AC Servo Motor Using Neural Network (교류 서보 전동기의 속도제어를 위한 뉴러퍼지 관측기설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.158-160
    • /
    • 2006
  • In this paper, a neuro-fuzzy observer system is designed using neuro-fuzzy system for speed control of AC servo motor. This neuro-fuzzy observer is proposed to with the problems occur in the Luenberger observer and sliding observer. The problems of Luenberger and sliding observer are to have to know the dynamics and internal parameters of the system. Performance of the neuro-fuzzy observer system has verified through the experiment with dynamometer load. It is shown that feasibility of the neuro-fuzzy observer is verified.

A Study on the PI Controller of AC Servo Motor using Genetic Algorithm (유전자알고리즘을 이용한 교류서보전동기의 PI 제어기에 관한 연구)

  • Kim, Hwan;Park, Se-Seung;Choi, Youn-Ok;Cho, Geum-Bae;Kim, Pyoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.81-91
    • /
    • 2006
  • Recently, G.A studies have studied and demonstrated that artificial intelligence like G.A networks, G.A PI controller. The design techniques of PI controller using G.A with the newly proposed teaming algorithm was presented, and the designed controller with AC servo motor system. The goal of this paper is to design the AC servo motor using genetic algorithm and to control drive robot. And in this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for genetic algorithm PI controller. Our experimental results show that this approach increases overall classification accuracy rate significantly. Finally, we executed for the implementation of high performance speed control system. It is used a 16-bit DSP, IMS320LF2407, which is capable of the high speed and floating point calculation.