• Title/Summary/Keyword: AC Modules

Search Result 84, Processing Time 0.023 seconds

Flyback Inverter Using Voltage Sensorless MPPT for Photovoltaic AC Modules

  • Ryu, Dong-Kyun;Choi, Bong-Yeon;Lee, Soon-Ryung;Kim, Young-Ho;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1293-1302
    • /
    • 2014
  • A flyback inverter using voltage sensorless maximum power point tracking (MPPT) for photovoltaic (PV) AC modules is presented. PV AC modules for a power rating from 150 W to 300 W are generally required for their small size and low price because of the installation on the back side of PV modules. In the conventional MPPT technique for PV AC modules, sensors for detecting PV voltage and PV current are required to calculate the PV output power. However, system size and cost increase when the voltage sensor and current sensor are used because of the addition of the auxiliary circuit for the sensors. The proposed method uses only the current sensor to track the MPP point. Therefore, the proposed control method overcomes drawbacks of the conventional control method. Theoretical analysis, simulation, and experiment are performed to verify the proposed control method.

A Study on How to Minimize the Luminance Deviation of AC-LED Lighting (교류 LED 조명의 빛 밝기 편차를 최소화하는 방법에 대한 연구)

  • Dong Won Lee;Bong Hee Lee;Byungcheul Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.255-260
    • /
    • 2023
  • In order to spread LED lighting, LED lighting technology directly driven by alternating current (AC) commercial power has recently been introduced. Since current does not flow at a voltage lower than the threshold voltage of the LED, a non-conductive section occurs in the current waveform, and the higher the threshold voltage of the LED, the more discontinuous current waveforms are generated. In this paper, multi-LED modules are connected in series so that the threshold voltage can be adjusted according to the number of LED modules. A small number of LED modules are driven at a low instantaneous rectified voltage, and a large number of LED modules are driven at a high instantaneous rectified voltage to lengthen the overall lighting time of AC-LED lighting, thereby minimizing the luminance deviation of AC-LED lighting. In addition, the load current flowing through the LED module is adjusted to be the same as the design current even at the maximum rectified voltage higher than the design voltage, so that the light brightness of the LED module is kept constant. Therefore, even if the rectified voltage applied to the LED module changes, the AC-LED lighting in which the light brightness is constant and the luminance deviation is minimal has been realized.

A Novel Flyback-type Utility Interactive Inverter for AC Module Systems

  • Shimizu Toshihisa;Nakamura Naoki;Wada Keiji
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.518-522
    • /
    • 2001
  • In recent years, natural energy has attracted growing interest because of environmental concerns. Many studies have been focused on photovoltaic power generation systems because of the ease of use in urban areas. On the conventional system, many photovoltaic modules (PV modules) are connected in series in order to obtain the sufficient DC-bus voltage for generating AC output voltage at the inverter circuit. However, the total generation power on the PV modules sometimes decreases remarkably because of the shadows that partially cover the PV modules. In order to overcome this drawback, an AC module strategy is proposed. On this system, a small power DC-AC utility interactive inverter is mounted on each PV module individually and the inverter operates so as to generate the maximum power from the corresponding PV module. This paper presents a novel flyback-type utility interactive inverter circuit suitable for AC module systems. The feature of the proposed system are, (1) small in volume and light in weight, (2) stable AC current injection, (3) enabling a small DC capacitor. The effectiveness of the proposed system is clarified through the simulation and the experiments.

  • PDF

Algorithm for Reducing the Effect of Network Delay of Sensor Data in Network-Based AC Motor Drives

  • Chun, Tae-Won;Ahn, Jung-Ryol;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.279-284
    • /
    • 2011
  • Network-based controls for ac motor drive systems are becoming increasingly important. In this paper, an ac motor control system is implemented by a motor control module and three sensor modules such as a voltage sensor module, a current sensor module, and an encoder module. There will inevitably be network time delays from the sensor modules to the motor control system, which often degrades and even destabilizes the motor drive system. As a result, it becomes very difficult to estimate the network delayed ac sensor data. An algorithm to reduce the effects of network time delays on sensor data is proposed, using both a synchronization signal and a simple method for estimating the sensor data. The algorithm is applied to a vector controlled induction motor drive system, and the performance of the proposed algorithm is verified with experiments.

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

A PWM Buck AC-AC Converter with Instantaneous Compensation for Voltage Sag and Surge (전압 Sag와 Surge에 대한 순시보상 기능을 갖는 PWM Buck AC-AC 컨버터)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.197-200
    • /
    • 2001
  • This paper presents a PWM buck AC-AC converter with instantaneous compensation for input voltage sag and surge. The presented converter use commercial IGBT modules and its output voltage is regulated so as to remain constant AC output voltage. The feedforward control technique is also proposed to establish instantaneous duty level change whereby stable output voltage will be retained. This paper show the characteristics and control algorithm of the converter through various PSPICE simulations.

  • PDF

Parallel Connected High Frequency AC Link Inverters Based on Full Digital Control

  • Sha, Deshang;Guo, Zhiqiang;Deng, Kai;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.595-603
    • /
    • 2012
  • This paper presents a full digital control strategy for parallel connected modular inverter systems. Each modular inverter is a high frequency (HF) AC link inverter which is composed of a HF inverter and a HF transformer followed by a cycloconverter. To achieve equal sharing of the load current and to suppress the circulating currents among the modules, a three-loop control strategy, consisting of a common output voltage regulation (OVR) loop, individual circulating current suppression (CCS) loops and individual inner current tracking (ICT) loops, is proposed. The ICT loops are implemented with predictive current control from which high precision current tracking can be obtained. The effectiveness of the proposed control strategy is verified by simulation and experimental results from parallel connected two full-bridge HF AC link inverter modules.

Redundant Operation of a Parallel AC to DC Converter via a Serial Communication Bus

  • Kanthaphayao, Yutthana;Kamnarn, Uthen;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • The redundant operation of a parallel AC to DC converter via a serial communication bus is presented. The proposed system consists of three isolated CUK power factor correction modules. The controller for each converter is a dsPIC30F6010 microcontroller while a RS485 communication bus and the clock signal are used for synchronizing the data communication. The control strategy of the redundant operation relies on the communication of information among each of the modules, which communicate via a RS485 serial bus. This information is received from the communication checks of the converter module connected to the system to share the load current. Performance evaluations were conducted through experimentation on a three-module parallel-connected prototype, with a 578W load and a -48V dc output voltage. The proposed system has achieved the following: the current sharing is quite good, both the transient response and the steady state. The converter modules can perform the current sharing immediately, when a fault is found in another converter module. In addition, the transient response occurs in the system, and the output voltages are at their minimum overshoot and undershoot. Finally, the proposed system has a relatively simple implementation for the redundant operation.

Three phase AC output voltage control using three modules of the single phase quasi Z-source AC-AC converter (단상 quasi Z-소스 AC-AC 컨버터 3개 모듈을 이용한 3상 교류 출력 전압 제어)

  • Eom, Jun-Hyun;Jung, Young-Gook
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.43-44
    • /
    • 2014
  • 본 논문에서는 단상 Quasi Z-소스 AC-AC 컨버터 3대를 이용하여 3상 교류 출력전압 제어를 제안하였다. 제안된 시스템은 3대의 단상 Quasi Z-소스 AC-AC 컨버터에 종전의 간단한 듀티비 제어를 통하여 입력에 대하여 동상의 벅-부스트 출력모드와 역상의 벅-부스트 출력모드를 모두 출력하는 4상한 출력 3상 교류 전압 제어를 하였다. PSIM시뮬레이션을 통하여 종전의 듀티비 제어를 통한 동상의 부스트 모드와 역상의 벅-부스트 모드 출력 전압과 제안한 듀티비 제어에 의해 동상의 벅 모드가 출력됨으로써 단상 Quasi Z-소스 AC-AC 컨버터의 간단한 듀티비 제어만을 통하여 3상 4상한 교류 출력전압 제어가 되는 것을 확인하였다.

  • PDF

GORENSTEIN MODULES UNDER FROBENIUS EXTENSIONS

  • Kong, Fangdi;Wu, Dejun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1567-1579
    • /
    • 2020
  • Let R ⊂ S be a Frobenius extension of rings and M a left S-module and let 𝓧 be a class of left R-modules and 𝒚 a class of left S-modules. Under some conditions it is proven that M is a 𝒚-Gorenstein left S-module if and only if M is an 𝓧-Gorenstein left R-module if and only if S ⊗R M and HomR(S, M) are 𝒚-Gorenstein left S-modules. This statement extends a known corresponding result. In addition, the situations of Ding modules, Gorenstein AC modules and projectively coresolved Gorenstein flat modules are considered under Frobenius extensions.