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Abstract

A flyback inverter using voltage sensorless maximum power point tracking (MPPT) for photovoltaic (PV) AC modules is
presented. PV AC modules for a power rating from 150 W to 300 W are generally required for their small size and low price
because of the installation on the back side of PV modules. In the conventional MPPT technique for PV AC modules, sensors for
detecting PV voltage and PV current are required to calculate the PV output power. However, system size and cost increase when
the voltage sensor and current sensor are used because of the addition of the auxiliary circuit for the sensors. The proposed method
uses only the current sensor to track the MPP point. Therefore, the proposed control method overcomes drawbacks of the
conventional control method. Theoretical analysis, simulation, and experiment are performed to verify the proposed control method.
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I. INTRODUCTION

Interest in photovoltaic energy has grown nowadays in
response to increased environmental concerns. A number of
circuits and their control schemes for photovoltaic power
generation systems have been studied [1]. A conventional
system employs a PV array, in which many PV modules are
connected in series or parallel to obtain sufficient DC input
voltage for generating AC grid line voltage. However, the
conventional system suffers from power loss caused by
mismatch between PV modules and shadows created by trees,
buildings, and other obstacles partially covering modules [2].
The latest technology for decentralized grid-connected PV
systems involves PV AC modules, such as module integrated
converters and micro inverters [3]-[6]. The PV AC modules are
combinations of a single PV module and single-phase
interactive inverter. The inverter is installed either at the back
side of PV modules or support structure [7]. The benefits of
this approach permit the PV AC modules to overcome the
weak points of conventional systems, such as mismatch and
necessity of avoiding shadows created by obstacles [8].
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This paper presents the flyback inverter using voltage
sensorless MPPT for PV AC modules. This topology
configuration is simple. Fewer power switches are used than in
other topologies for PV AC modules. MPPT has to be
performed when this topology is used in PV AC modules
because the output power of PV modules is changed according
to weather condition [9]. For conventional PV AC modules,
perturb and observe (P&O) method or incremental conductance
(INC) method is used for MPPT control. PV output power
calculated by the PV voltage and PV current is required to
perform these conventional MPPT methods. Hence, the voltage
and current sensors are essential for sensing the PV voltage and
PV current. However, PV AC modules need a low price and
small size because of a power conversion system (flyback
inverter) installed in the other side of PV modules. Therefore,
conventional control methods are unsuitable for the PV AC
modules. Unlike the conventional MPPT methods, the
proposed method requires only one PV current sensor. An
accumulated quantity is calculated by using the sensed PV
current. In addition, quantity variation and current variation are
used to calculate the PV power variation. Finally, the flyback
inverter performs the MPPT through controlling PV power
variation and PV current variation.

A novel MPPT scheme with a reduced number of sensors is
presented, which has minimized overall circuit size, volume,
and cost. Theoretical and operational principles are explained
along with informative simulation and experimental results.

© 2014 KIPE
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Fig. 1. Configuration of the PV flyback inverter.

II.  OPERATION OF PV FLYBACK INVERTER

Fig. 1 shows the PV flyback inverter. The PV module is
used for the input source of this inverter. The grid line is
connected to the output load. This inverter consists of a
decoupling capacitor, main switch, diode, unfolding bridge,
output filter, and transformer. The primary switch S, operates
with high switching frequency. Switches S;;— S,, of unfolding
bridge operate with 50 Hz to 60 Hz, which is similar to a grid
line frequency. The decoupling capacitor needs to reduce ripple
components of the input voltage and current because nearly
constant input voltage and current are essential for MPPT
technique. The flyback transformer generates the AC power
and isolates the PV module and grid line to prevent electric
accidents. The output filter is used to reduce the harmonic
component and create a current waveform in the single-phase
utility line voltage.

Fig. 3 shows the key waveforms of the flyback inverter. The
grid voltage is synchronized with grid line frequency. The
primary switch PWM signal is generated when the reference
current i*ref is compared with the carrier waveform. Switches
Sy; and Sy, are turned on in the positive half cycle of the grid
voltage and turned off in the negative half cycle, whereas
switches S;, and S; are turned on in the negative half cycle and
turned off in the positive half cycle. The magnetizing inductor
builds up energy when the primary switch S, is turned on. This
inductor releases the energy when the S, is turned off. The
current waveforms of S;; — S, are synchronized with the
voltage of the grid line.

III. PROPOSED VOLTAGE SENSORLESS MPPT

The PV module has nonlinear power-versus-voltage
characteristics in the photovoltaic system because of
temperature, aging, and possible breakdown of individual
cells.

Many different MPPT techniques for photovoltaic system
have been used to control nonlinear PV modules because
linear control theory cannot be applied to extract the
maximum electric power from the PV module. Among these
different techniques, P&O and INC methods have the
advantage of not requiring PV module characteristics [10],
[11].

Fig. 4 shows a flowchart of the conventional P&O MPPT.
In this MPPT method, calculating the PV output power is
necessary. Sensing the PV voltage and current requires
individual sensors. However, each sensor increases the
system size, volume, and cost in the PV AC modules because
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Fig. 2. Mode transitions of the PV flyback inverter.
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Fig. 3. Key waveforms of the flyback inverter.

of the additional devices and peripheral circuit for PV sensors.
Voltage sensorless MPPT is proposed to overcome these
problems.

Fig. 5 shows a flowchart of the proposed voltage sensorless
MPPT method. The proposed MPPT technique needs only
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Fig. 6. Analysis of proposed voltage sensorless MPPT during
primary switch transition.

one input sensor. In this flowchart, the PV current is sensed
to calculate the PV power variation. Moreover, the off-time is
calculated. The quantity variation during half period at grid
line is also calculated by using the PV current and calculated
off-time. Subsequently, the PV current multiplied with the
quantity variation is identified as the power variation. The
power variation is compared with zero, such as P&O MPPT,
in Fig. 4.

To calculate the off-time in Fig. 5, the switching time T is
considered equal to the sum of the on-time and off-time.

Fig. 6 shows the following:

vf/[n] T-t,[n] M

L(l _ bref [H]J ©)
2

Eq. (2) shows that f;,, is defined as the primary switching
frequency, A, is defined as the magnitude of the carrier
waveform, and i,/* is defined as the reference current during
the nth switching period.

The energy charge from the PV array during off-time of

the primary switch is equal to the electric charge emitted
from the input capacitor during the on-time of the primary

t@/]’ [n] =

switch.
Aqlt,,]1=Aqlt,; ] (3)
Aq=1,(T~t,[n]) 4)

We obtain the following when Equation (4) is integrated
over the interval u, of the switching period shown in Fig.

6(c):
qun = ziPVto/f [”] (%)

Eq. (5) shows that the total amount of electric charge that
flows out of the PV array in the off-time during the u, period
is defined as Q[u,] and expressed as follows:

Q[ux]=iipyfi[l—i’jﬂJ ©

Carr

Fig. 7 shows waveforms of the primary switch and
secondary switches S, and S; obtained for comparison
between the carrier waveform and waveform of the reference
current i*,, during the u,th switching period. When Qfu, /]
and Q[u,] are defined as the total amount of electric charge
during the off-time at the end of the u,;th and u.th periods,
respectively, the variable electric charge between the Q[u,.;]
and Q[u,] is expressed as follows:

AQ =0[u,]-0lu,,] 7
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Finally, the variable PV voltage can be estimated as
follows:

Ay =22

C ®)

The current perturbation is computed for P&O MPPT after
calculating the PV power by using the calculated PV voltage
variation and sensed PV current. The signs of AP and A/ are
useful in deciding the direction in which the perturbation is
applied in Fig. 5.

Fig. 8 shows the proposed voltage sensorless MPPT control
block diagram. In the grid-connected mode of operation, a fast
and accurate phase-locked-loop (PLL) method is essential for
the reference current i*,. In addition, the PLL is used to
generate the rectified waveform synchronized grid voltage.
The secondary switches are controlled by a PWM signal
calculated by the grid line frequency PWM generator using
PLL output signal. Switch S; is turned on in the positive half
cycle of the grid voltage. Switch S; is turned on in the
negative half cycle of the grid voltage in Fig. 7. The resulting
signal of the absolute sine generator is calculated by the PLL
output signal. The off-time calculator calculates the off-time
by using the carrier magnitude, switching frequency, and
resulting signal of the absolute sine generator. This calculated
off-time is multiplied by the PV current. The voltage
calculator generates a variable voltage by using the PV
current and the multiplied signal. The MPPT controller
calculates the PV reference current by using the PV current
and the variable voltage. When this signal is compared with
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Fig. 9. Simulation results of flyback inverter using conventional
MPPT control method.

the PV current, the error signal enters a PI controller. When
the resulting signal of the PI controller is multiplied by the
resulting signal of the absolute sine generator, the reference
current i*,, is calculated. Finally, the primary switch is
controlled by using the reference current i*,, and the carrier
waveform.

IV. SIMULATION RESULTS

Simulation results are presented in Figs. 9-10 produced
with PSIM 9.0 software to verify the theoretical analysis of
the proposed voltage sensorless MPPT in a flyback inverter.
The PV module is modeled by C-language-based DLL blocks
in this simulation. The experiment was simulated and tested
by using a 200 W cell module.

Fig. 9 shows the simulation results of flyback inverter
using conventional P&O MPPT control method. Fig. 9(a)
shows that the output power of PV module tracked the
PV-module maximum power. Figs. 9(b) and (c) show that
output voltage and current of PV module are controlled to
track the MPP.

Fig. 10 shows the simulation results of flyback inverter
using the proposed voltage sensorless MPPT control method.
Fig. 10(a) shows that the output power of PV module tracked
the PV-module maximum power. Fig. 9(b) shows that the
output current of PV module is controlled for tracking the
MPP. Fig. 10(c) presents the change amount of charge in
decoupling capacitor C;, calculated from voltage sensorless
MPPT control method. The amount of charge in C;, is
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Fig. 10. Simulation results of flyback inverter using the proposed
MPPT control method.

constantly changed in the maximum power point (2.5 second
point).

Fig. 11 shows the simulation results using proposed
voltage sensorless MPPT under partial shading condition.
Periods 1 and 3 used 1000 W/m’ irradiation condition.
Output power is decreased by partial shading in period 2.
Fig. 11(a) to 11(d) are simulation results when irradiation is
decreased per 20% by partial shading. The simulation
results show that the proposed voltage sensorless MPPT
control stably tracks maximum power point under partial
shading condition.

These results indicate that when the
conventional method is compared with the proposed method,
the MPP point-tracking ability of the proposed MPPT method
using only one input current sensor is almost the same as that
of the conventional MPPT method.

simulation

V. EXPERIMENTAL RESULTS

A 200 W laboratory prototype is implemented to verify
the performance of the proposed method.

Fig. 12(a) shows the front side of the flyback inverter,
which consists of an input capacitor, transformer, filter
inductor, EMI filter, DSP TMS320F28035, filter capacitor, a
DC-DC converter for the voltage sensorless peripheral circuit,
2 diodes, 4 switches, an RC snubber, a peripheral circuit for
sensing the grid voltage, and a peripheral circuit for sensing
the input voltage sensor. The peripheral circuit for the input
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Fig. 11. Simulation results of the flyback inverter using the
proposed voltage sensorless MPPT under partial shading
condition, (a) 90% irradiance, (b) 70% irradiance condition, (c)
50% irradiance condition, (d) 30% irradiance condition.
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Fig. 12. Flyback inverter test bed used in this experiment.
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TABLEI

SIMULATION AND EXPERIMENTAL PARAMETERS OF THE FLYBACK
INVERTER USING VOLTAGE SENSORLESS MPPT
————————————— " —

Parameter Symbol Value
INPUT VOLTAGE Vin 30-45[V]
OUTPUT VOLTAGE Vour 220[Vims]
INPUT POWER P 200[W]
MAGNETIZING INDUCTANCE Ly, 12[pH]
LEAKAGE INDUCTANCE Ly 0.3[uH]
INPUT CAPACITANCE Cin 13.2[mF]
FILTER INDUCTANCE L, 5[mH]
FILTER CAPACITOR Cr 47[nF]
SNUBBER RESISTANCE Rsp 10[Q]
SNUBBER CAPACITANCE Csp 68[nF]
SWITCHING FREQUENCY fow 50[kHz]
GRID FREQUENCY Sarid 60[Hz]
Grid voltage(100V/div) A~ s — N

et e s o — A v o = \

" -_; \\__/ N N ‘\__;' ‘\‘_‘,.’

Rectified current (DAC|0.5V/div)

Secondaryswich 52 in positive half cycle (5V/div)

ﬁeconjﬂg_‘witch T&in;iegati‘fg_lulﬁ cycleﬂ.’i!%iv)

S

Mousine PLIMS(CY  PRIMS(C?  PImeCH  PAPKpKIC!)  PSmax(Ch)  FONeniCl)  FTReq(CH  PBNeq(Cd)
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(a) Main switch waveforms of the primary stage.
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(b) Output waveforms of the secondary stage.

Fig. 13. Key waveforms of the flyback inverter using the
proposed voltage sensorless MPPT method.

voltage sensor can be reduced when the proposed voltage
sensorless MPPT method is used. Therefore, the system size,
volume, and cost can be reduced. In this system, DSP
TMX320F28035 (Texas Instruments) is used as the main
controller. The system parameters are presented in Table L.
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In this experiment, a 480[W] solar array simulator
(Agilent) is used as PV array and a grid line is used as output
load.

Fig. 13 shows the experimental results of the key

waveforms of the flyback inverter. Fig. 13(a) shows the grid
voltage, rectified current, and PWM signals of secondary
switches S, and S;. The rectified current and secondary
switches are synchronized with the grid voltage. Fig. 13(b)
shows the output waveforms of the secondary stage. In this
figure, the output current and phase angle are synchronized
with the grid voltage.
Fig. 14 shows the experimental results of the flyback inverter
using conventional P&O MPPT method according to PV
module power. Fig. 15 shows the experimental results of
flyback inverter using the proposed voltage sensorless MPPT
method based on PV module power. The input power
comparison between Figs. 14 and 15 confirms that the MPP
point-tracking ability of the proposed MPPT method using
only one input current sensor is almost the same as that of the
conventional MPPT method. The proposed method can
reduce system size, volume, and cost. Consequently, the
proposed MPPT method would be effective in PV AC
modules and building integrated photovoltaic systems.

Dynamic tracking performance is investigated through PV
simulator when irradiation is changed to 30%, 50%, and 70%
on PV module.

Fig. 16 shows the experimental results of the conventional
P&O MPPT. MPPT control and supplement current to grid
are stably performed according to changing irradiation.

Fig. 17 shows the experimental results of the proposed
MPPT method. Irradiation is also changed to 30%, 50%, and
70% through a PV simulator. Consequently, maximum power
point is tracked by the proposed MPPT same as the
conventional MPPT using a voltage sensor.
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Fig. 17. Experimental results of flyback inverter using the
proposed voltage sensorless MPPT method under various
irradiation conditions.
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Fig. 18. MPPT efficiency comparison of conventional P&O and
proposed voltage sensorless MPPT control methods.

Fig. 18 shows the experimental results of the flyback
inverter using the conventional and proposed MPPT methods
shown in Figs. 1 and 2. The operating point in different load
conditions is also shown. The experimental results revealed
that the proposed MPPT efficiency is approximately 96% to
99%, as shown in Fig. 3. This MPPT efficiency is similar to
that of the conventional method.

VI. CONCLUSIONS

This paper proposed a flyback inverter using voltage
sensorless MPPT for photovoltaic AC modules. The circuit
topology, modulation technique, and operational principles of
the proposed MPPT are analyzed in detail. The voltage
sensorless MPPT is implemented in a DSP TMX320F 28035
to optimize the performance of the flyback inverter. A
comparison between the proposed voltage sensorless MPPT
method and the conventional P&O MPPT method reveals the
same maximum power point.

The proposed flyback inverter can reduce system size,
volume, and cost because of the reduced number of sensors.
Simulation and experimental results show that the proposed
flyback inverter can be applied to MPPT for photovoltaic AC

modules with successful performance.
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