• 제목/요약/키워드: A549 lung cancer cells

검색결과 408건 처리시간 0.023초

Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도 (Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases)

  • 김현중;김홍기;김진영;감철우;박동일
    • 동의생리병리학회지
    • /
    • 제22권3호
    • /
    • pp.630-641
    • /
    • 2008
  • Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.

Antiproliferative effect of Citrus junos extracts on A549 human non-small-cell lung cancer cells

  • Geum-Bi Ryu;Young-Ran Heo
    • Journal of Nutrition and Health
    • /
    • 제56권1호
    • /
    • pp.12-23
    • /
    • 2023
  • Purpose: This study investigates the alterations in A549 human non-small-cell lung cancer (NSCLC) cells exposed to Citrus junos extract (CJE). We further examine the antiproliferative and apoptotic effects of CJE on NSCLC cells. Methods: Inhibition of proliferation was examined by applying the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) colorimetric assay on CJE-treated A549 NSCLC cells. The lactate dehydrogenase (LDH) assay was performed to measure the degree of toxicity of CJE on NSCLC cells. The effect on migratory proliferation was confirmed using the scratch wound healing assay. The antiproliferative effect of the CJE on human lung cancer cells was verified through morphological observation, fluorescence microscopy, and caspase-3 colorimetry. Results: Exposure of NSCLC cells to CJE resulted in a dose- and time-dependent decrease in cell activity and increased toxicity to the cells. In addition, microscopic observation revealed a reduced ability of the cancer cells to migrate and proliferate after exposure to the CJE, with simultaneous morphological apoptotic changes. Fluorescence staining and microscopic examination revealed that this death was a process of self-programmed cell death of NSCLC cells. Compared to unexposed NSCLC cells, the expression of caspase-3 was significantly increased in cells exposed to CJE. Conclusion: Exposure of A549 human NSCLC cells to CJE inhibits the proliferation, increases the cytotoxicity, and decreases the ability of cells to migrate and grow. Moreover, the expression of caspase-3 increases after CJE treatment, suggesting that the apoptosis of NSCLC cells is induced by a chain reaction initiated by caspase-3. These results indicate that Citrus junos is a potential therapeutic agent for human non-small-cell lung cancer.

Steroidal Saponins from Paris polyphylla Suppress Adhesion, Migration and Invasion of Human Lung Cancer A549 Cells Via Down-Regulating MMP-2 and MMP-9

  • He, Hao;Zheng, Lei;Sun, Yan-Ping;Zhang, Guang-Wei;Yue, Zheng-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10911-10916
    • /
    • 2015
  • Background: Tumor metastases are the main reasons for oncotherapy failure. Paris polyphylla (Chinese name: Chonglou) has traditionally been used for its anti-cancer actions. In this article, we focus on the regulation of human lung cancer A549 cell metastases and invasion by Paris polyphylla steroidal saponins (PPSS). Materials and Methods: Cell viability was evaluated in A549 cells by MTT assay. Effects of PPSS on invasion and migration were investigated by wound-healing and matrigel invasion chamber assays. Adhesion to type IV collagen and laminin was evaluated by MTT assay. Expression and protease activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blotting and gelatin zymography, respectively. Results: PPSS exerted growth inhibitory effects on A549 cells, and effectively inhibited A549 cell adhesion, migration and invasion in a concentration-dependent manner. Western blotting and gelatin zymography analysis revealed that PPSS inhibited the expression and secretion of MMP-2 and MMP-9 in A549 cells. Conclusions: PPSS has the potential to suppress the migration, adhesion and invasion of A549 cells. PPSS could be a potential candidate for interventions against lung cancer metastases.

The Association of Increased Lung Resistance Protein Expression with Acquired Etoposide Resistance in Human H460 Lung Cancer Cell Lines

  • Lee, Eun-Myong;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.1018-1023
    • /
    • 2006
  • Chemoresistance remains the major obstacle to successful therapy of cancer. In order to understand the mechanism of multidrug resistance (MDR) that is frequently observed in lung cancer patients, here we studied the contribution of MDR-related proteins by establishing lung cancer cell lines with acquired resistance against etoposide. We found that human H460 lung cancer cells responded to etoposide more sensitively than A549 cells. Among MDR-related proteins, the expression of p-glycoprotein (Pgp) and lung resistance protein (LRP) were much higher in A549 cells compared with that in H460 cells. When we established H460-R1 and -R2 cell lines by progressive exposure of H460 cells to increasing doses of etoposide, the response against etopbside as well as doxorubicin was greatly reduced in R1 and R2 cells, suggesting MDR induction. Induction of MDR was not accompanied by a decrease in the intracellular accumulation of etoposide and the expression of MDR-related proteins that function as drug efflux pumps such as Pgp and MRP1 was not changed. We found that the acquired resistance paralleled an increased expression of LRP in H460 cells. Taken together, our data suggest the implicative role of LRP in mediating MDR in lung cancer.

Involvement of Cdc25c in Cell Cycle Alteration of a Radioresistant Lung Cancer Cell Line Established with Fractionated Ionizing Radiation

  • Li, Jie;Yang, Chun-Xu;Mei, Zi-Jie;Chen, Jing;Zhang, Shi-Min;Sun, Shao-Xing;Zhou, Fu-Xiang;Zhou, Yun-Feng;Xie, Cong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5725-5730
    • /
    • 2013
  • Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R, by exposing the parental A549 cells to repeated ${\gamma}$-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells.

셀러리악 추출물의 암세포 증식 억제 효과 (Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation)

  • 이재혁;박정숙
    • 한국융합학회논문지
    • /
    • 제12권9호
    • /
    • pp.179-183
    • /
    • 2021
  • 본 연구는 다양한 항암성분을 함유한 Celeriac Extract의 암세포 증식에 미치는 영향을 살펴보기 위하여 실시되었다. 실험에 사용한 암 세포주는 5종으로 폐암세포 A549, 전립샘암세포 DU-145, 자궁암세포 HeLa, 유방암세포 MCF-7, 간암세포 SNU-182 로 모두 인체 유래 암 세포주를 사용하였으며 Celeriac Extract 10ug/mL, 100ug/mL, 1000ug/mL 에 대한 암세포의 증식 억제는 CCK-8 방법을 이용하여 측정하였다. 암세포 증식 억제를 살펴본 결과 Celeriac Extract 1000ug/mL는 폐암세포 A549, 전립샘암세포 DU-145, 자궁암세포 HeLa, 간암세포 SNU-182에서 유의한 증식 억제를 보였으며 농도 의존성을 나타냈다. 그러나 유방암세포 MCF-7 에서는 농도 의존적인 감소만 보였다. 결론적으로, 다양한 인간유래 암 세포주를 이용한 Celeriac Extract의 세포 증식 억제기전들은 암 예방효과 및 치료제 개발의 잠재력을 제공한다고 볼 수 있다.

A Novel All-trans Retinoid Acid Derivative N-(3-trifluoromethyl-phenyl)-Retinamide Inhibits Lung Adenocarcinoma A549 Cell Migration through Down-regulating Expression of Myosin Light Chain Kinase

  • Fan, Ting-Ting;Cheng, Ying;Wang, Yin-Feng;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7687-7692
    • /
    • 2014
  • Aim: To observe the effects of a novel all-trans retinoid acid (ATRA) derivative, N-(3-trifluoromethyl-phenyl)-retinamide (ATPR), on lung adenocarcinoma A549 cells and to explore the potential mechanism of ATPR inhibiting of A549 cell migration. Materials and Methods: The cytotoxicity of ATRA and ATPR on A549 cells was assessed using MTT assay. Wound healing assays were used to analyze the influences of ATRA, ATPR, ML-7 (a highly selective inhibitor of myosin light chain kinase (MLCK)), PMA (an activator of MAPKs) and PD98059 (a selective inhibitor of ERK1/2) on the migration of A549 cells. Expression of MLCK and phosphorylation of myosin light chain (MLC) were assessed by Western blotting. Results: ATRA and ATPR inhibited the proliferation of A549 cells in a dose- and time-dependent manner, and the effect of ATPR was much more remarkable compared with ATRA. Relative migration rate and migration distance of A549 cells both decreased significantly after treatment with ATPR or ML-7. The effect on cell migration of PD98059 combining ATPR treatment was more notable than that of ATPR alone. Moreover, compared with control groups, the expression levels of MLCK and phosphorylated MLC in A549 cells were both clearly reduced in ATRA and ATPR groups. Conclusions: ATPR could suppress the migration and invasion of A549 cells, and the mechanism might be concerned with down-regulating the expression of MLCK in the ERK-MAPK signaling pathway, pointing to therapeutic prospects in lung cancer.

Hypoxia-Inducible Factor 1 Promoter-Induced JAB1 Overexpression Enhances Chemotherapeutic Sensitivity of Lung Cancer Cell Line A549 in an Anoxic Environment

  • Hu, Ming-Dong;Xu, Jian-Cheng;Fan, Ye;Xie, Qi-Chao;Li, Qi;Zhou, Chang-Xi;Mao, Mei;Yang, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2115-2120
    • /
    • 2012
  • The presence of lung cancer cells in anoxic zones is a key cause od chemotherapeutic resistance. Thus, it is necessary to enhance the sensitivity of such lung cancer cells. However, loss of efficient gene therapeutic targeting and inefficient objective gene expression in the anoxic zone in lung cancer are dilemmas. In the present study, a eukaryotic expression plasmid pUC57-HRE-JAB1 driven by a hypoxia response elements promoter was constructed and introduced into lung cancer cell line A549. The cells were then exposed to a chemotherapeutic drug cis-diamminedichloroplatinum (C-DDP). qRT-PCR and western blotting were used to determine the mRNA and protein level and flow cytometry to examine the cell cycle and apoptosis of A549 transfected pUC57-HRE-JAB1. The results showed that JAB1 gene in the A549 was overexpressed after the transfection, cell proliferation being arrested in G1 phase and the apoptosis ratio significantly increased. Importantly, introduction of pUC57-HRE-JAB1 significantly increased the chemotherapeutic sensitivity of A549 in an anoxic environment. In conclusion, JAB1 overexpression might provide a novel strategy to overcome chemotherapeutic resistance in lung cancer.

녹차의 (-)EGCG에 의한 사람 폐암 세포주 A549의 c-Jun N-terminal Kinase 1과 Activating Protein-1활성화를 통한 세포고사 (Green Tea (-)EGCG Induces the Apoptotic Death of Lung Cancer Cells via Activation of c-Jun N-terminal Kinase 1 and Activating Protein-1)

  • 박지선;신미경;손희숙;박래길;김명선;정원훈
    • Journal of Nutrition and Health
    • /
    • 제35권1호
    • /
    • pp.53-59
    • /
    • 2002
  • Green tea has been recognized as a favorite beverage for centuries in Easter and Westers cultures. Recently, anti-tumor effects of green tea constituents have received increasing attention. However, the mechanism of catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical insights of anti-tumor effects, (-)epigallocatechin-gallate(EGCG) of catechin was applied to human lung cancer A549 cells. (-)EGCG induced the death of A549 cells, which was revealed as apoptosis in DNA fragmentation assay. (-)EGCG induced the activation of caspase family cysteine proteases including capase-3, -8 and -9 proteases in A549 cells. Furthermore, (-)EGCG increased the phosphotransferase activity of c-Jun N-terminal kinase 1JNK 1), which further induced tole transcriptional activation of activating protein-1(AP-1) in A549 cells. We suggest that (-)EGCG-induced apotosis of A549 cells is mediated by signaling pathway involving caspase family cysteine protease, JNK1 and transcription factor, AP-1.

Preparation of Lysine-Coated Magnetic Fe2O3 Nanoparticles and Influence on Viability of A549 Lung Cancer Cells

  • Ma, Yu-Hua;Peng, Hai-Ying;Yang, Rui-Xia;Ni, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8981-8985
    • /
    • 2014
  • Objective: To explore the effect of lysine-coated oxide magnetic nanoparticles (Lys@MNPs) on viability and apoptosis of A549 lung cancer cells. Methods: Transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Zeta potentiometric analyzer were employed to characterize Lys@MNPs. Then Lys@MNPs and lung cancer A549 cells were co-cultured to study the effect of Lys@MNPs on cell viability and apoptosis. The pathway of Lys@MNPs entering A549 cells was detected by TEM and cell imaging by 1.5 T MRI. Results: Lys@MNPs were 10.2 nm in grain diameter, characterized by small size, positive charge, and superparamagnetism. Under low-dose concentration of Lys@MNPs (< $40{\mu}g/mL$), the survival rate of A549 cells was decreased but remained higher than 95% while under high-dose concentration ($100{\mu}g/mL$), the survival ratewas still higher than 80%, which suggested Lys@MNPs had limited influence on the viability of A549 cells, with good biocompatibility and and no induction of apoptosis. Moreover, high affinity for cytomembranes, was demonstrated presenting good imaging effects. Conclusion: Lys@MNPs can be regarded as a good MRI negative contrast agents, with promising prospects in biomedicine.