Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.9.179

Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation  

Lee, Jae-Hyeok (Department of Emergency Medical Rescue, Nambu University)
Park, Jeong-Sook (Department of Nursing, Nambu University)
Publication Information
Journal of the Korea Convergence Society / v.12, no.9, 2021 , pp. 179-183 More about this Journal
Abstract
This study was carried out examine the effect of Celeriac Extract, which contains various anticancer ingredients, on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The five cell lines used in the experiment were lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, breast cancer cells MCF-7, and liver cancer cells SNU-182. All cancer cells derived from the human body were used, and the inhibition of cancer cell proliferation with Celeriac Extract 10ug/mL, 100ug/mL, and 1000ug/mL was measured using the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Celeriac Extract 1000ug/mL showed significant proliferation inhibition in lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, and liver cancer cells SNU-182, and showed a concentration dependence. However, only a concentration-dependent decrease was observed in breast cancer cells MCF-7.In conclusion, it can be seen that the cell proliferation inhibition mechanisms of Celeriac Extract using various human-derived cancer cell lines provide the potential for cancer prevention and therapeutic development.
Keywords
Celeriac extract; Lung cancer cell; Prostate cancer cell; Uterine cancer cell; Liver cancer cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. F. Birt, B. Walker, M. G. Tibbels & E. Bresnick. (1986). Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis, 7, 959-963.   DOI
2 R. L.Siegel, K. D. Miller & A. Jemal (2016). Cancer statistics. CA Cancer J Clin, 66, 7-30.   DOI
3 O. Sadaki. (1996). The development of functional foods and material. Bio-industry, 13, 44-50.
4 X. Wang, Y. Ouyang, J. Liu, M. Zhu, G. Zhao & W. Bao. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 349.
5 R. C. Garcia, C. A. Gonzalez, A. Agudo & E. Riboli. (1999). Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control, 10, 71-75.   DOI
6 M. Rossi, E. Negri, R. Talamini, C. Bosetti, M. Parpinel & P. Gnagnarella. (2006). Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev, 15, 1555-1558.   DOI
7 C. Bosetti, L. Spertini, M. Parpinel, P. Gnagnarella, P. Lagiou & E. Negri. (2005). Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev, 14, 805-808.   DOI
8 B. Rocca & G. A. FitzGerald. (2002). Cyclooxygenases and prostaglandins shaping up the immune response. Int. Immunopharmacol. 2, 603-607.   DOI
9 P. L. Horn-Ross, E. M. John, A. J. Canchola, S. L. Stewart, & M. M. Lee. (2003). Phytoestrogen intake and endometrial cancer risk. J. Natl. Cancer Inst, 95, 1158-1164.   DOI
10 C. L. Frankenfeld, J. R. Cerhan, W. Cozen, S. Davis, M. Schenk & L. M. Morton. (2008). Dietary flavonoid intake and non-Hodgkin lymphoma risk. Am J. Clin Nutr, 87, 1439-1445.   DOI
11 H. Chisholm. (1911). Encyclopaedia Britannica. Cambridge University Press.
12 X. Tong, S. Mirzoeva, D. Veliceasa, B. B. Bridgeman, P. Fitchev, & M. L. Cornwell. (2014). Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. Oncotarget, 5, 11413-11427.   DOI
13 S. Wolfgang. (2012). Celeriac (Apium graveolens rapaceum). Desirable Vegetable Varieties, By Vegetable. The Owlcroft Company.
14 P. T. Ana et al. (2015). The Effect of Apium Nodiflorum in Experimental Osteoporosis. Current Pharmaceutical Biotechnology, 16(5), 414-423.   DOI
15 J. H. Lee, H. J. Jeong, J. S. Park. (2021). Effect of Celeriac Extract on the LPS-Induced Production of Pro-inflammatory Cytokines by RAW 264.7 cells. Journal of the Korea Convergence Society, 12(2), 295-300,   DOI
16 L. Chunhua, L. Donglan, F. Xiuqiong, Z. Lihua, F. Qin, & L. Yawei. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J. Nutr. Biochem, 24, 1766-1775.   DOI
17 Growing Crops: Celery and Celeriac. (2011). Urban Organic.
18 D. F. Birt, B. Walker, M. G. Tibbels & E. Bresnick. (1986). Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis, 7, 959-963.   DOI
19 S. Shukla, P. Fu & S. Gupta. (2014). Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis, 19, 883-894.   DOI
20 B. Mafuvadze, Y. Liang, C. Besch-Williford, X. Zhang, & S. M. Hyder. (2012). Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm Cancer, 3, 160-171.   DOI
21 M. A. Gates, A. F. Vitonis, S. S. Tworoger, B. Rosner, L. Titus-Ernstoff & S. E. Hankinson. (2009). Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int. J. Cancer. 124, 1918-1925.   DOI
22 W. L. Chen & Y. Xiao. (2020). Apigenin protects against ischemia-/hypoxia-induced myocardial injury by mediating pyroptosis and apoptosis. In Vitro Cellular & Developmental Biology, 13, 307-312.
23 S. F Jin, H. L. Ma, Z. L. Liu, S. T. Fu, C. P. Zhang, & Y. He. (2015). XL413, a cell division cycle 7 kinase inhibitor enhanced the anti-fibrotic effect of pirfenidone on TGF-β1-stimulated C3H10T1/2 cells via Smad2/4. Exp Cell Res, 10;339(2), 289-299.   DOI
24 S. Shukla, N. Bhaskaran, M. A. Babcook, P. Fu, G. T. Maclennan. & S. Gupta. (2014). Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 35, 452-460.   DOI
25 B. B. Bridgeman, P. Wang, B. Ye, J. C. Pelling, O. V. Volpert & X. Tong, (2016). Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell Signal, 28, 460-468.   DOI
26 I. Goleberg. (1994). Functional Foods. Chapman & Hall Press, New York, USA, 350-550.