DOI QR코드

DOI QR Code

Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation

셀러리악 추출물의 암세포 증식 억제 효과

  • 이재혁 (남부대학교 응급구조학과) ;
  • 박정숙 (남부대학교 간호학과)
  • Received : 2021.06.01
  • Accepted : 2021.09.20
  • Published : 2021.09.28

Abstract

This study was carried out examine the effect of Celeriac Extract, which contains various anticancer ingredients, on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The five cell lines used in the experiment were lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, breast cancer cells MCF-7, and liver cancer cells SNU-182. All cancer cells derived from the human body were used, and the inhibition of cancer cell proliferation with Celeriac Extract 10ug/mL, 100ug/mL, and 1000ug/mL was measured using the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Celeriac Extract 1000ug/mL showed significant proliferation inhibition in lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, and liver cancer cells SNU-182, and showed a concentration dependence. However, only a concentration-dependent decrease was observed in breast cancer cells MCF-7.In conclusion, it can be seen that the cell proliferation inhibition mechanisms of Celeriac Extract using various human-derived cancer cell lines provide the potential for cancer prevention and therapeutic development.

본 연구는 다양한 항암성분을 함유한 Celeriac Extract의 암세포 증식에 미치는 영향을 살펴보기 위하여 실시되었다. 실험에 사용한 암 세포주는 5종으로 폐암세포 A549, 전립샘암세포 DU-145, 자궁암세포 HeLa, 유방암세포 MCF-7, 간암세포 SNU-182 로 모두 인체 유래 암 세포주를 사용하였으며 Celeriac Extract 10ug/mL, 100ug/mL, 1000ug/mL 에 대한 암세포의 증식 억제는 CCK-8 방법을 이용하여 측정하였다. 암세포 증식 억제를 살펴본 결과 Celeriac Extract 1000ug/mL는 폐암세포 A549, 전립샘암세포 DU-145, 자궁암세포 HeLa, 간암세포 SNU-182에서 유의한 증식 억제를 보였으며 농도 의존성을 나타냈다. 그러나 유방암세포 MCF-7 에서는 농도 의존적인 감소만 보였다. 결론적으로, 다양한 인간유래 암 세포주를 이용한 Celeriac Extract의 세포 증식 억제기전들은 암 예방효과 및 치료제 개발의 잠재력을 제공한다고 볼 수 있다.

Keywords

Acknowledgement

This paper was supported by research funds from Nambu University, 2020.

References

  1. B. Rocca & G. A. FitzGerald. (2002). Cyclooxygenases and prostaglandins shaping up the immune response. Int. Immunopharmacol. 2, 603-607. https://doi.org/10.1016/S1567-5769(01)00204-1
  2. R. L.Siegel, K. D. Miller & A. Jemal (2016). Cancer statistics. CA Cancer J Clin, 66, 7-30. https://doi.org/10.3322/caac.21332
  3. I. Goleberg. (1994). Functional Foods. Chapman & Hall Press, New York, USA, 350-550.
  4. O. Sadaki. (1996). The development of functional foods and material. Bio-industry, 13, 44-50.
  5. X. Wang, Y. Ouyang, J. Liu, M. Zhu, G. Zhao & W. Bao. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 349.
  6. R. C. Garcia, C. A. Gonzalez, A. Agudo & E. Riboli. (1999). Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control, 10, 71-75. https://doi.org/10.1023/A:1008867108960
  7. M. Rossi, E. Negri, R. Talamini, C. Bosetti, M. Parpinel & P. Gnagnarella. (2006). Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev, 15, 1555-1558. https://doi.org/10.1158/1055-9965.EPI-06-0017
  8. C. Bosetti, L. Spertini, M. Parpinel, P. Gnagnarella, P. Lagiou & E. Negri. (2005). Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev, 14, 805-808. https://doi.org/10.1158/1055-9965.EPI-04-0838
  9. M. A. Gates, A. F. Vitonis, S. S. Tworoger, B. Rosner, L. Titus-Ernstoff & S. E. Hankinson. (2009). Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int. J. Cancer. 124, 1918-1925. https://doi.org/10.1002/ijc.24151
  10. P. L. Horn-Ross, E. M. John, A. J. Canchola, S. L. Stewart, & M. M. Lee. (2003). Phytoestrogen intake and endometrial cancer risk. J. Natl. Cancer Inst, 95, 1158-1164. https://doi.org/10.1093/jnci/djg015
  11. C. L. Frankenfeld, J. R. Cerhan, W. Cozen, S. Davis, M. Schenk & L. M. Morton. (2008). Dietary flavonoid intake and non-Hodgkin lymphoma risk. Am J. Clin Nutr, 87, 1439-1445. https://doi.org/10.1093/ajcn/87.5.1439
  12. Growing Crops: Celery and Celeriac. (2011). Urban Organic.
  13. H. Chisholm. (1911). Encyclopaedia Britannica. Cambridge University Press.
  14. S. Wolfgang. (2012). Celeriac (Apium graveolens rapaceum). Desirable Vegetable Varieties, By Vegetable. The Owlcroft Company.
  15. W. L. Chen & Y. Xiao. (2020). Apigenin protects against ischemia-/hypoxia-induced myocardial injury by mediating pyroptosis and apoptosis. In Vitro Cellular & Developmental Biology, 13, 307-312.
  16. P. T. Ana et al. (2015). The Effect of Apium Nodiflorum in Experimental Osteoporosis. Current Pharmaceutical Biotechnology, 16(5), 414-423. https://doi.org/10.2174/1389201015666141229104102
  17. J. H. Lee, H. J. Jeong, J. S. Park. (2021). Effect of Celeriac Extract on the LPS-Induced Production of Pro-inflammatory Cytokines by RAW 264.7 cells. Journal of the Korea Convergence Society, 12(2), 295-300, https://doi.org/10.15207/JKCS.2021.12.2.295
  18. S. F Jin, H. L. Ma, Z. L. Liu, S. T. Fu, C. P. Zhang, & Y. He. (2015). XL413, a cell division cycle 7 kinase inhibitor enhanced the anti-fibrotic effect of pirfenidone on TGF-β1-stimulated C3H10T1/2 cells via Smad2/4. Exp Cell Res, 10;339(2), 289-299. https://doi.org/10.1016/j.yexcr.2015.11.013
  19. L. Chunhua, L. Donglan, F. Xiuqiong, Z. Lihua, F. Qin, & L. Yawei. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J. Nutr. Biochem, 24, 1766-1775. https://doi.org/10.1016/j.jnutbio.2013.03.006
  20. D. F. Birt, B. Walker, M. G. Tibbels & E. Bresnick. (1986). Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis, 7, 959-963. https://doi.org/10.1093/carcin/7.6.959
  21. S. Shukla, N. Bhaskaran, M. A. Babcook, P. Fu, G. T. Maclennan. & S. Gupta. (2014). Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 35, 452-460. https://doi.org/10.1093/carcin/bgt316
  22. S. Shukla, P. Fu & S. Gupta. (2014). Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis, 19, 883-894. https://doi.org/10.1007/s10495-014-0971-6
  23. B. Mafuvadze, Y. Liang, C. Besch-Williford, X. Zhang, & S. M. Hyder. (2012). Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm Cancer, 3, 160-171. https://doi.org/10.1007/s12672-012-0114-x
  24. D. F. Birt, B. Walker, M. G. Tibbels & E. Bresnick. (1986). Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis, 7, 959-963. https://doi.org/10.1093/carcin/7.6.959
  25. X. Tong, S. Mirzoeva, D. Veliceasa, B. B. Bridgeman, P. Fitchev, & M. L. Cornwell. (2014). Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. Oncotarget, 5, 11413-11427. https://doi.org/10.18632/oncotarget.2551
  26. B. B. Bridgeman, P. Wang, B. Ye, J. C. Pelling, O. V. Volpert & X. Tong, (2016). Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell Signal, 28, 460-468. https://doi.org/10.1016/j.cellsig.2016.02.008