• Title/Summary/Keyword: A Statistical Process Control System

Search Result 194, Processing Time 0.028 seconds

Development of Statistical Process Control System for Tobacco Manufacturing Process (담배 제조 공정의 통계적 관리시스템 개발)

  • 김영호;송정호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.1
    • /
    • pp.53-59
    • /
    • 2001
  • To decrease of deviations from target specifications and excessive variability around targe, we exclusively designed statistical process control system involving general manager and expert tool for cigarette manufacturing process. This system is a unique programming environment for the development of total process control software including various control charts according to data type and process capability analysis. Also this system includes the statistical analysis module to analyze defective causes immediately when inferior products are made and the module to offer regular reports. This system is customized considering the manufacture environment based on the opinions of workers.

  • PDF

Applying an Expert System to Statistical Process Control (통계적 공정 제어에 전문가 시스템의 적용에 관한 연구)

  • 윤건상;김훈모;최문규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.411-414
    • /
    • 1995
  • Statistical Process Control (SPC) is a set of methodologies for signaling the presence of undesired sources of variation in manufacturing processes. Expert System in SPC can serve as a valuable tool to automate the analysis and interpretation of control charts. In this paper we put forward a method of successful application of Expert System to SPC in manufacturing process.

  • PDF

Applying Expert System to Statistical Process Control in Semiconductor Manufacturing (반도체 수율 향상을 위한 통계적 공정 제어에 전문가 시스템의 적용에 관한 연구)

  • 윤건상;최문규;김훈모;조대호;이칠기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.103-112
    • /
    • 1998
  • The evolution of semiconductor manufacturing technology has accelerated the reduction of device dimensions and the increase of integrated circuit density. In order to improve yield within a short turn around time and maintain it at high level, a system that can rapidly determine problematic processing steps is needed. The statistical process control detects abnormal process variation of key parameters. Expert systems in SPC can serve as a valuable tool to automate the analysis and interpretation of control charts. A set of IF-THEN rules was used to formalize knowledge base of special causes. This research proposes a strategy to apply expert system to SPC in semiconductor manufacturing. In analysis, the expert system accomplishes the instability detection of process parameter, In diagnosis, an engineer is supported by process analyzer program. An example has been used to demonstrate the expert system and the process analyzer.

  • PDF

Statistical Process Control Software developed by MS-EXCEL and Visual Basic (MS-EXCEL과 Visual Basic으로 개발한 통계적 공정관리 소프트웨어)

  • Han, Kyung-Soo;Ahn, Jeong-Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 1996
  • In this study, we developed a software for statistical process control. This software presents $\bar{x}$, R, CUSUM, EWMA control chart and process capability index. In this system, statistical process control methods are integrated into the automated method on a real time base. It is available in process control of specified type and can be performed on personal computer with network system.

  • PDF

Real Time Process Control System under 100 PPM Management System (100 PPM 관리체제하의 실시간 공정관리 방안)

  • 조남호;신숙현
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.1
    • /
    • pp.116-134
    • /
    • 1997
  • The present automated manufacturing environment is very different when the classical statistical process control method based on batch processing were used. Therefore these must be replaced by automated statistical process control method. In this point of view, this paper intends to develop the automated statistical process control method which can be implemented in the present automated manufacturing environment. Specially this study developed the rules to identify the special causes of the manufacturing process in the aspect of the 100 PPM management, and a numerical example is demonstrated to verify the usefulness of these rules.

  • PDF

Determination of Quality Cost Policy under Multiple Assignable Causes (다중이상원인하의 경제적 품질비용 정책결정)

  • 김계완;김용필;박지연;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.1
    • /
    • pp.7-16
    • /
    • 2003
  • At present, company has to produce a product that consumer like with a competitive price, a good quality, and a fitting time to supply. Process control and quality control are very important to supply with a product uniformly and inexpensively. Process control is given much weight in the quality control in manufacturing system. Statistical process controls(SPC) that are used in process generally have major impact on manufacturing, product design activities, and process development potentially. Control charts in statistical process control method can be interpreted the data from quality characteristics in production process and discriminated between chance variation and assignable variation in process. In addition, control chart can be used to monitor the process output and detect when changes in the inputs are required to bring the process back to an in-control state. The models that relate the influential inputs to process outputs help determine the nature and magnitude of the adjustments required. In this paper, the characteristic of product quality is monitored by control chart during the machining process and construction of quality control cycle is considered to divide into two types in this case that different assignable causes lead to shifts having different magnitudes. Then we are intended to find a process shift magnitude which has economical quality cost policy and are considered to quality cost functions to find a process shift magnitude. Those costs are categorized into the well-known categories of prevention, appraisal, and internal failure and external failure. This paper ends with numerical examples that demonstrate the usefulness of the model.

The Use of Local Outlier Factor(LOF) for Improving Performance of Independent Component Analysis(ICA) based Statistical Process Control(SPC) (LOF를 이용한 ICA 기반 통계적 공정관리의 성능 개선 방법론)

  • Lee, Jae-Shin;Kang, Bok-Young;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.1
    • /
    • pp.39-55
    • /
    • 2011
  • Process monitoring has been emphasized for the monitoring of complex system such as chemical processing industries to achieve the efficiency enhancement, quality management, safety improvement. Recently, ICA (Independent Component Analysis) based MSPC (Multivariate Statistical Process Control) was widely used in process monitoring approaches. Moreover, DICA (Dynamic ICA) has been introduced to consider the system dynamics. However, the existing approaches show the limitation that their performances are strongly dependent on the statistical distributions of control variables. To improve the limitation, we propose a novel approach for process monitoring by integrating DICA and LOF (Local Outlier Factor). In this paper, we aim to improve the fault detection rate with the proposed method. LOF detects local outliers by using density of surrounding space so that its performance is regardless of data distribution. Therefore, the proposed method not only can consider the system dynamics but can also assure robust performance regardless of the statistical distributions of control variables. Comparison experiments were conducted on the widely used benchmark dataset, Tennessee Eastman process (TE process), and showed the improved performance than existing approaches.

A Study on Process Control Modeling for Precision Guided Munitions Quality Control (정밀유도무기 품질관리를 위한 공정관리 수행모델에 관한 연구)

  • Kim, Si-Ok;Lee, Chang-Woo;Cha, Sung-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.487-494
    • /
    • 2013
  • Purpose: In this study, we propose the precision guided munitions verification methodology using the statistical analysis method has been proposed. and it can be applied to the precision guided munitions quality assurance work. Methods: This modeling is based on Failure Mode and Effects Analysis, Statistical Process Control, Defense Quality Managerment System, Production Readiness Review, Manufacturing Readiness Assesment and so on. Results: The Process Control Modeling that has the following procedures ; searching the critical to quality, statistical analysis by process, verify process. Moreover, the effectiveness of the methodology is verified by applying to the precision guided munitions. Conclusion: To achieve a analysis methods of statistical process control and verify process for precision guided munitions.

AN INTEGRATED PROCESS CONTROL PROCEDURE WITH REPEATED ADJUSTMENTS AND EWMA MONITORING UNDER AN IMA(1,1) DISTURBANCE WITH A STEP SHIFT

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.381-399
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC re-duces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This paper considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an IMA(1,1) model with a step shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied according to the predicted deviation from target. For detecting special causes the exponentially weighted moving average control chart is applied to the observed deviations. It was assumed that the adjustment under the presence of a special cause may increase the process variability or change the system gain. Reasonable choices of parameters for the IPC procedure are considered in the context of the mean squared deviation as well as the average run length.

Economic Design of VSI $\bar X$ Control Chart for Decision to Improve Process (공정개선 의사결정을 위한 VSI $\bar X$ 관리도의 경제적 설계)

  • Song, Suh-Ill;Kim, Jae-Ho;Jung, Hey-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2007
  • Today, the statistical process control (SPC) in manufacture environment is an important role at the process by the productivity improvement of the manufacturing systems. The control chart in this statistical method is widely used as an important statistical tool to find the assignable cause that provoke the change of the process parameters such as the mean of interest or standard deviation. But the traditional SPC don't grasp the change of process according to the points fallen the near control limits because of monitoring the variance of process such as the fixed sampling interval and the sample size and handle the cost of the aspect of these sample point. The control chart can be divided into the statistical and economic design. Generally, the economic design considers the cost that maintains the quality level of process. But it is necessary to consider the cost of the process improvement by the learning effects. This study does the economic design in the VSI $\bar X$ control chart and added the concept of loss function of Taguchi in the cost model. Also, we preyed that the VSI $\bar X$ control chart is better than the FSI $\bar X$ in terms of the economic aspects and proposed the standard of the process improvement using the VSI $\bar X$ control chart.