• Title/Summary/Keyword: 7관절 로봇팔

Search Result 6, Processing Time 0.024 seconds

The design of the remote control Crabster robotic arm (Crabseter 로봇팔의 원격 제어기 설계)

  • Choi, Hyeung-Sik;Jeong, Sang-Ki;Uhm, Tai-Woong;Loc, Mai Ba;Kim, Joon-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.77-78
    • /
    • 2011
  • 한국해양연구원에서 개발 중인 Crabster 로봇팔을 기구학적으로 분석하고, 속도기구학을 매트랩을 이용하여 작업공간에 대해서도 분석 및 해석을 완료하였다. 운용자와 Crabster 로봇팔의 움직임을 고려해 개념 설계한 인간팔 크기의 7축 마스터 암 및 그립퍼의 기구부에 대해 2D 및 3D의 도면을 완성하였고, 마스터 암에 적용할 모터의 사양과 각 관절에 피드백 된 힘을 반영하기 위한 구동 모터의 엔코더를 이용한 위치 센서, DSP2812를 이용한 제어 명령 입력 장치와 구동 모터 드라이버를 포함한 마스터 - 슬레이브 시스템의 개념 설계를 완성하였다.

  • PDF

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.

A Development of Robot Arm Direct Teaching System (로봇팔 직접 교시 시스템 개발)

  • Woong-Keun Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • In this paper, we developed an intuitive teaching and control system that directly teaches a task by holding the tip of a robotic arm and moving it to a desired position. The developed system consists of a 6-axis force sensor that measures position and attitude forces at the tip of the robot arm, an algorithm for generating robot arm joint speed control commands based on the measured forces at the tip, and a self-made 6-axis robot arm and control system. The six-dimensional force/torque of the position posture of the robot arm operator steering the handler is detected by the force sensor attached to the handler at the leading edge and converted into velocity commands at the leading edge to control the 7-axis robot arm. The verification of the research method was carried out with a self-made 7-axis robot, and it was confirmed that the proposed force sensor-based robot end-of-arm control method operates successfully through experiments by teaching the operator to adjust the handler.

Short-term Effect of Robot-assisted Therapy on Arm Reaching in Subacute Stroke Patients (상지로봇치료가 아급성기 뇌졸중 환자의 팔뻗기 움직임에 미치는 단기 효과)

  • Hong, Won-Jin;Kim, Yong-Wook;Kim, Jongbae;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.4
    • /
    • pp.79-91
    • /
    • 2018
  • Objective : The purpose of this study was to investigate the short-term effect of robot-assisted therapy to improve upper extremity function in subacute stroke. Method : This study was a retrospective study using the medical record. The subjects were 20 patients who were diagnosis with stroke within 6 months. All patients received general rehabilitation intervention during the experimental period and robot-assisted therapy and task-oriented training. Robot assisted therapy was composed of 1 sessions, 1hour per person and task-oriented training was same. For result analysis, descriptive statistics, paired t-test were used. Results : After intervention, all participants got 3D motion analysis about reaching. For the result, there was statistically significant improvement in smoothness in robot assisted therapy(p<.05). there was no statistically significant difference between robot assisted therapy and task-oriented training in speed, time. In this result, we knew the robot assisted therapy can short term effect in elbow joint during arm reaching. Conclusion : Robot assisted therapy is considered as alternative choice in clinical occupational therapy for improving upper extremity function in subacute stage stroke patients.

Regulation Control of Two-Link Robot Arm with the Input Constraint using Sum of Squares Method (SOS 제어기법을 이용한 입력제한이 있는 2관절 로봇팔의 조정제어)

  • Jeong, Jin-Gang;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1270-1276
    • /
    • 2016
  • This paper proposes the controller design for regulation control of two-link robot arm using sum of squares (SOS) control method that takes into account the input constraint. The existing studies of two link robotic arm system used a linear model of all the non-linearity of the system is linearized. For a linear controller, since the model of the system is simplified, it is possible to design a controller in consideration of constraints on the disturbance. However, there is a limit to the performance using a linearized model for a system with a complex nonlinear properties. To compensate for this in the case of using a fuzzy LMI method, it is necessary to have a large number of linear models and thus there is a disadvantage that the system becomes complicated. To solve these problems, we represents a two-link robot arm system with a polynomial model using a Taylor series expansion and design the controller considering the case where the magnitude of the control input is limited using SOS method. We demonstrate by simulations the feasibility of the proposed algorithm.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.