Browse > Article
http://dx.doi.org/10.22683/tsnr.2018.7.4.079

Short-term Effect of Robot-assisted Therapy on Arm Reaching in Subacute Stroke Patients  

Hong, Won-Jin (Dept. of Occupational Therapy, Severance Hospital, Yonsei University)
Kim, Yong-Wook (Dept. of Occupational Therapy, Severance Hospital, Yonsei University)
Kim, Jongbae (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
Park, Ji-Hyuk (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
Publication Information
Therapeutic Science for Rehabilitation / v.7, no.4, 2018 , pp. 79-91 More about this Journal
Abstract
Objective : The purpose of this study was to investigate the short-term effect of robot-assisted therapy to improve upper extremity function in subacute stroke. Method : This study was a retrospective study using the medical record. The subjects were 20 patients who were diagnosis with stroke within 6 months. All patients received general rehabilitation intervention during the experimental period and robot-assisted therapy and task-oriented training. Robot assisted therapy was composed of 1 sessions, 1hour per person and task-oriented training was same. For result analysis, descriptive statistics, paired t-test were used. Results : After intervention, all participants got 3D motion analysis about reaching. For the result, there was statistically significant improvement in smoothness in robot assisted therapy(p<.05). there was no statistically significant difference between robot assisted therapy and task-oriented training in speed, time. In this result, we knew the robot assisted therapy can short term effect in elbow joint during arm reaching. Conclusion : Robot assisted therapy is considered as alternative choice in clinical occupational therapy for improving upper extremity function in subacute stage stroke patients.
Keywords
Robot-assisted therapy; Stroke; Task-oriented; Upper limb;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mehrholz, J., Hadrich, A., Platz, T., Kugler, J., & Pohl, M. (2012). Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Systematic Reviews, 6, Cd006876. doi: 10.1002/14651858.CD006876.pub3
2 Pollock, A., Farmer, S. E., Brady, M. C., Langhornem, P. Mead, G. E., Mehrholz, J. & Van Wijc, F. (2014). Interventions for improving upper limb function after stroke. Cochrane Database Systematic Reviews, 11, Cd010820. doi: 10.1002/14651858.CD010820.pub2
3 Prange, G. B., Jannink, M. J., Groothuis-Oudshoorn, C. G., Hermens, H. J., & Ijzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabiltation Research and Development, 43(2), 171-184.   DOI
4 Rah, U. W., Kim, Y. H., Ohn, S. H., Chun, M. H., Kim, M. W., & Shin, M. J. (2014). Clinical practice guideline for stroke rehabilitation in korea 2012. Brain & NeuroRehabilitation, 7(1), 1-75. doi.org/10.12786/bn.2014.7.Suppl1.S1   DOI
5 Sale, P., Franceschini, M., Mazzoleni, S., Palma, E., Agosti, M., & Posteraro, F. (2014). Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. Journal of Neuroengineering and Rehabiltation, 11, 104. doi: 10.1186/1743-0003-11-104   DOI
6 Stanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Physio Therapy, 73(7), 447-454.   DOI
7 Turchetti, C., Vitiello, N., Trieste, L., Romiti, S. Geisler, E., & Micera, S. (2014). Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption. IEEE Reviews in Biomedical Engineering, 7, 143-153. doi: 10.1109/rbme.2014.2300234   DOI
8 Wood-Dauphinee, S. L., Williams, J. I., & Shapiro, S. H. (1990). Examining outcome measures in a clinical study of stroke. Stroke, 21(5), 731-739.   DOI
9 Yoo, D. H., & Kim, S. Y. (2015). Effects of upper limbrobot-assisted therapy in the rehabilitation of stroke patients. Journal of Physical Therapy Science, 27(3), 677-679. doi: 10.1589/jpts.27.677   DOI
10 Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of Neuroeng Rehabiltation, 11, 111. doi: 10.1186/1743-0003-11-111   DOI
11 Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Physio Therapy, 67(2), 206-7.   DOI
12 Colombo, R., Sterpi, I., Mazzone, A., Delconte, C., & Pisano, F. (2012). Robot-aided neurorehabilitation in sub-acute and chronic stroke: Does spontaneous recovery have a limited impact on outcome? NeuroRehabilitation, 33(4), 621-629.
13 Conroy, S. S., Whitall, J., Dipietro, L., Jones-Lush, L. M., Zhan, M., Finley, M. A., & Bever, C. T. (2011). Effect of gravity on robot-assisted motor training after chronic stroke: A randomized trial. Archives of Physical Medicine and Rehabilitation, 92(11), 1754-1761. doi: 10.1016/j.apmr.2011.06.016   DOI
14 Daly, J. J., Hogan, N., Perepezko, E. M., Krebs, H. I., Rogers, J. M., Goyal, K. S., ... Ruff, R. L. (2005). Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of Rehabilitation Research and Development, 42(6), 723-736.   DOI
15 Fugl-Meyer, AR., Jaaksko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine. 7(1),13-31.
16 Duret, C. (2010). Contributions of robotic devices to upper limb poststroke rehabilitation. Rev Neurol (Paris), 166(5), 486-493. doi: 10.1016/j.neurol.2009.10.004   DOI
17 Duret, C., Courtial, O., Grosmaire, A. G., & Hutin, E. (2015). Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: Exploration of patient/robot interactions and the motor recovery process. Biomed Research International, 2015, 7 doi: 10.1155/2015/482389
18 Fazekas, G., Horvath, M., Troznai, T., & Toth, A. (2007). Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. Journal of Rehabiltation Medicine, 39(7), 580-582. doi:10.2340/16501977-0087   DOI
19 Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil Neural Repair, 16(3), 232-240.   DOI
20 Gregson, J. M., Leathley, M., Moore, A. P., Sharma, A. K., Smith, T. L. & Watkins, C. L. (1999). Reliability of the tone assessment scale and the modified ashworth scale as clinical tools for assessing poststroke spasticity. Archives of Physical Medicine Rehabiltation, 80(9), 1013-1016.   DOI
21 Hsieh, Y. W., Wu, C. Y., Lin, K. C., Yao, G., Wu, K. Y., & Chang, Y. J. (2012). Dose-response relationship of robot-assisted stroke motor rehabilitation: The impact of initial motor status. Stroke, 43(10), 2729-2734. doi:10.1161/strokeaha.112.658807   DOI
22 Mayr, A., Kofler, M., & Saltuari, L. (2008). ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomized controlled pilot study. Handchir Mikrochir Plast chir, 40, 66-73. doi:10.1055/s-2007-989425   DOI
23 Husemann, B., Muller, F., Krewer, C., Heller, S., & Koenig, E. (2007). Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke, 38, 349-354.   DOI
24 Joo, M. C., Park, H. I., Noh, S. E., Kim, J. H., Kim, H. J., & Jang, C. H. (2014). Effects of robot-assisted armtraining in patients with subacute stroke. Brain & Neurorehabilitation, 7(2), 111. doi:10.12786/bn.2014.7.2.111   DOI
25 Kahn, L. E., Zygman, M. I., Rymer, W. Z., & Reinkensmeyer, D. J. (2006). Robot-assisted reaching exercise promotesarm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 3(1), 12-12. doi: 10.1186/1743-0003-3-12   DOI
26 Kwakkel, G., Kollen, B. J., van der Grond, J., & Prevo, A. J. (2003). Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke, 34(9), 2181-2186. doi: 10.1161/01.str.0000087172.16305.cd   DOI
27 Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabiltation and Neural Repair, 22(2), 111-121. doi: 10.1177/1545968307305457   DOI