• Title/Summary/Keyword: 6D Motion tracking

Search Result 39, Processing Time 0.035 seconds

Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM

  • Kamal, Shaharyar;Jalal, Ahmad;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1857-1862
    • /
    • 2016
  • Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.

Motion-Recognizing Game Controller with Tactile Feedback (동작인식 및 촉감제공 게임 컨트롤러)

  • Jeon, Seok-Hee;Kim, Sang-Ki;Park, Gun-Hyuk;Han, Gab-Jong;Lee, Sung-Kil;Choi, Seung-Moon;Choi, Seung-Jin;Eoh, Hong-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.1-6
    • /
    • 2008
  • This paper proposes a game controller that provides user motion input and tactile feedback display, in addition to the traditional button-type input. The device utilizes both an accelerometer and an infrared camera in order to estimate 3D position and to recognize user motion. The information from the accelerometer and the camera are integrated for better performance. Various tactile sensations are presented using a voice-coil type vibrator. We apply the proposed controller to a motion-based game and validate its usability.

  • PDF

A Hand Gesture Recognition System using 3D Tracking Volume Restriction Technique (3차원 추적영역 제한 기법을 이용한 손 동작 인식 시스템)

  • Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.201-211
    • /
    • 2013
  • In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

A Study on the Development of Ku-band Satellite Tracking Antenna System for Ship (선박용 Ku-Band 위성추적형 안테나시스템 개발에 관한 연구)

  • 배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1146-1152
    • /
    • 2003
  • Satellite television receiving antenna is required for watching TV on the vehicles, ship and car. Recently TV is not only facility as getting information but one of utility in our life. In Korea, already on the service multi-channel satellite TV using excellent visibility and sound, and there are many users using now by fixing antenna. On this thesis, developed ship's satellite TV receiving antenna, the azimuth controlling is adopted azimuth information using gyro sensor and differential of receiving signal strength algorithm, and elevation controlling used gimbals. The result of this research is successfully implemented Korean satellite tracking antenna as performance until ${\pm}$30 degree roll and pitch of ship motion.

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

A Study on the EMG Pattern Recognition Using SOM-TVC Method Robust to System Noise (시스템잡음에 강건한 SOM-TVC 기법을 이용한 근전도 패턴 인식에 관한 연구)

  • Kim In-Soo;Lee Jin;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.417-422
    • /
    • 2005
  • This paper presents an EMG pattern classification method to identify motion commands for the control of the artificial arm by SOM-TVC(self organizing map - tracking Voronoi cell) based on neural network with a feature parameter. The eigenvalue is extracted as a feature parameter from the EMG signals and Voronoi cells is used to define each pattern boundary in the pattern recognition space. And a TVC algorithm is designed to track the movement of the Voronoi cell varying as the condition of additive noise. Results are presented to support the efficiency of the proposed SOM-TVC algorithm for EMG pattern recognition and compared with the conventional EDM and BPNN methods.

Effectiveness of the Respiratory Gating System for Stereotectic Radiosurgery of Lung Cancer (Lung Cancer의 Stereotactic Radiosurgery시 Respiratory Gating system의 유용성에 대한 연구)

  • Song Heung Kwon;Kim Min Su;Yang Oh Nam;Park Cheol Su;Kwon Kyung Tae;Kim Jeong Man
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.13-17
    • /
    • 2005
  • Introduction : For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was peformed using the Respiratory gating system and its clinical effectiveness was evaluated. Methode and Materials : For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Result : Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient $\#$1, motion of GTV was reduced to 2.6 mm in treatment phases ($30\%\~60\%$), while that was 9.4 mm in full phases ($0\%\~90\%$) and for patient $\#$2, it was reduced to 2.3 mm in treatment phases ($30\%\~70\%$), while it was 11.7 mm in full phases ($0\%\~90\%$). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Conclusion : Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.

  • PDF

Non-restraint Master Interface of Minimally Invasive Surgical Robot Using Hand Motion Capture (손동작 영상획득을 이용한 최소침습수술로봇 무구속 마스터 인터페이스)

  • Jang, Ik-Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.105-111
    • /
    • 2016
  • Introduction: Surgical robot is the alternative instrument that substitutes the difficult and precise surgical operation; should have intuitiveness operationally to transfer natural motions. There are limitations of hand motion derived from contacting mechanical handle in the surgical robot master interface such as mechanical singularity, isotropy, coupling problems. In this paper, we will confirm and verify the feasibility of intuitive Non-restraint master interface which tracking the hand motion using infra-red camera and only 3 reflective markers without the hardware handle for the surgical robot master interface. Materials & methods: We configured S/W and H/W system; arranged 6 infra-red cameras and attached 3 reflective markers on hands for measuring 3 dimensional coordinate then we find the 7 motions of grasp, yaw, pitch, roll, px, py, pz. And we connected Virtual-Master to the slave surgical robot(Laparobot) and observed the feasibility. To verify the result of motion, we compare the result of Non-restraint master and that of clinometer (and protractor) through measuring 0~180 degree, 10degree interval, 1000 samples and recorded standard deviation stands for error rate of the value. Results: We confirmed that the average angle values of Non-restraint master interface is accurately corresponds to the result of clinometer (and protractor) and have low error rates during motion. Investigation & Conclusion: In this paper, we confirmed the feasibility and accuracy of 3D Non-restraint master interface that can offer the intuitive motion of non-contact hardware handle. As a result, we can expect the high intuitiveness, dexterousness of surgical robot.

Augmented Reality Game Interface Using Hand Gestures Tracking (사용자 손동작 추적에 기반한 증강현실 게임 인터페이스)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 2006
  • Recently, Many 3D augmented reality games that provide strengthened immersive have appeared in the 3D game environment. In this article, we describe a barehanded interaction method based on human hand gestures for augmented reality games. First, feature points are extracted from input video streams. Point features are tracked and motion of moving objects are computed. The shape of the motion trajectories are used to determine whether the motion is intended gestures. A long smooth trajectory toward one of virtual objects or menus is classified as an intended gesture and the corresponding action is invoked. To prove the validity of the proposed method, we implemented two simple augmented reality applications: a gesture-based music player and a virtual basketball game. In the music player, several menu icons are displayed on the top of the screen and an user can activate a menu by hand gestures. In the virtual basketball game, a virtual ball is bouncing in a virtual cube space and the real video stream is shown in the background. An user can hit the virtual ball with his hand gestures. From the experiments for three untrained users, it is shown that the accuracy of menu activation according to the intended gestures is 94% for normal speed gestures and 84% for fast and abrupt gestures.

  • PDF