• Title/Summary/Keyword: 65-nm CMOS

Search Result 156, Processing Time 0.019 seconds

Fixed Homography-Based Real-Time SW/HW Image Stitching Engine for Motor Vehicles

  • Suk, Jung-Hee;Lyuh, Chun-Gi;Yoon, Sanghoon;Roh, Tae Moon
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1143-1153
    • /
    • 2015
  • In this paper, we propose an efficient architecture for a real-time image stitching engine for vision SoCs found in motor vehicles. To enlarge the obstacle-detection distance and area for safety, we adopt panoramic images from multiple telegraphic cameras. We propose a stitching method based on a fixed homography that is educed from the initial frame of a video sequence and is used to warp all input images without regeneration. Because the fixed homography is generated only once at the initial state, we can calculate it using SW to reduce HW costs. The proposed warping HW engine is based on a linear transform of the pixel positions of warped images and can reduce the computational complexity by 90% or more as compared to a conventional method. A dual-core SW/HW image stitching engine is applied to stitching input frames in parallel to improve the performance by 70% or more as compared to a single-core engine operation. In addition, a dual-core structure is used to detect a failure in state machines using rock-step logic to satisfy the ISO26262 standard. The dual-core SW/HW image stitching engine is fabricated in SoC with 254,968 gate counts using Global Foundry's 65 nm CMOS process. The single-core engine can make panoramic images from three YCbCr 4:2:0 formatted VGA images at 44 frames per second and frequency of 200 MHz without an LCD display.

A Two-Point Modulation Spread-Spectrum Clock Generator With FIR-Embedded Binary Phase Detection and 1-Bit High-Order ΔΣ Modulation

  • Xu, Ni;Shen, Yiyu;Lv, Sitao;Liu, Han;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.425-435
    • /
    • 2016
  • This paper describes a spread-spectrum clock generation method by utilizing a ${\Delta}{\Sigma}$ digital PLL (DPLL) which is solely based on binary phase detection and does not require a linear time-to-digital converter (TDC) or other linear digital-to-time converter (DTC) circuitry. A 1-bit high-order ${\Delta}{\Sigma}$ modulator and a hybrid finite-impulse response (FIR) filter are employed to mitigate the phase-folding problem caused by the nonlinearity of the bang-bang phase detector (BBPD). The ${\Delta}{\Sigma}$ DPLL employs a two-point modulation technique to further enhance linearity at the turning point of a triangular modulation profile. We also show that the two-point modulation is useful for the BBPLL to improve the spread-spectrum performance by suppressing the frequency deviation at the input of the BBPD, thus reducing the peak phase deviation. Based on the proposed architecture, a 3.2 GHz spread-spectrum clock generator (SSCG) is implemented in 65 nm CMOS. Experimental results show that the proposed SSCG achieves peak power reductions of 18.5 dB and 11 dB with 10 kHz and 100 kHz resolution bandwidths respectively, consuming 6.34 mW from a 1 V supply.

A PVT-compensated 2.2 to 3.0 GHz Digitally Controlled Oscillator for All-Digital PLL

  • Kavala, Anil;Bae, Woorham;Kim, Sungwoo;Hong, Gi-Moon;Chi, Hankyu;Kim, Suhwan;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.484-494
    • /
    • 2014
  • We describe a digitally controlled oscillator (DCO) which compensates the frequency variations for process, voltage, and temperature (PVT) variations with an accuracy of ${\pm}2.6%$ at 2.5 GHz. The DCO includes an 8 phase current-controlled ring oscillator, a digitally controlled current source (DCCS), a process and temperature (PT)-counteracting voltage regulator, and a bias current generator. The DCO operates at a center frequency of 2.5 GHz with a wide tuning range of 2.2 GHz to 3.0 GHz. At 2.8 GHz, the DCO achieves a phase noise of -112 dBc/Hz at 10 MHz offset. When it is implemented in an all-digital phase-locked loop (ADPLL), the ADPLL exhibits an RMS jitter of 8.9 ps and a peak to peak jitter of 77.5 ps. The proposed DCO and ADPLL are fabricated in 65 nm CMOS technology with supply voltages of 2.5 V and 1.0 V, respectively.

An Adaptive-Bandwidth Referenceless CDR with Small-area Coarse and Fine Frequency Detectors

  • Kwon, Hye-Jung;Lim, Ji-Hoon;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.404-416
    • /
    • 2015
  • Small-area, low-power coarse and fine frequency detectors (FDs) are proposed for an adaptive bandwidth referenceless CDR with a wide range of input data rate. The coarse FD implemented with two flip-flops eliminates harmonic locking as long as the initial frequency of the CDR is lower than the target frequency. The fine FD samples the incoming input data by using half-rate four phase clocks, while the conventional rotational FD samples the full-rate clock signal by the incoming input data. The fine FD uses only a half number of flip-flops compared to the rotational FD by sharing the sampling and retiming circuitry with PLL. The proposed CDR chip in a 65-nm CMOS process satisfies the jitter tolerance specifications of both USB 3.0 and USB 3.1. The proposed CDR works in the range of input data rate; 2 Gb/s ~ 8 Gb/s at 1.2 V, 4 Gb/s ~ 11 Gb/s at 1.5 V. It consumes 26 mW at 5 Gb/s and 1.2 V, and 41 mW at 10 Gb/s and 1.5 V. The measured phase noise was -97.76 dBc/Hz at the 1 MHz frequency offset from the center frequency of 2.5 GHz. The measured rms jitter was 5.0 ps at 5 Gb/s and 4.5 ps at 10 Gb/s.

Design of Partial Product Accumulator using Multi-Operand Decimal CSA and Improved Decimal CLA (다중 피연산자 십진 CSA와 개선된 십진 CLA를 이용한 부분곱 누산기 설계)

  • Lee, Yang;Park, TaeShin;Kim, Kanghee;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.56-65
    • /
    • 2016
  • In this paper, in order to reduce the delay and area of the partial product accumulation (PPA) of the parallel decimal multiplier, a tree architecture that composed by multi-operand decimal CSAs and improved CLA is proposed. The proposed tree using multi-operand CSAs reduces the partial product quickly. Since the input range of the recoder of CSA is limited, CSA can get the simplest logic. In addition, using the multi-operand decimal CSAs to add decimal numbers that have limited range in specific locations of the specific architecture can reduce the partial products efficiently. Also, final BCD result can be received faster by improving the logic of the decimal CLA. In order to evaluate the performance of the proposed partial product accumulation, synthesis is implemented by using Design Complier with 180 nm COMS technology library. Synthesis results show the delay of the proposed partial product accumulation is reduced by 15.6% and area is reduced by 16.2% comparing with which uses general method. Also, the total delay and area are still reduced despite the delay and area of the CLA are increased.

Thermal Stable Ni-silicide Utilizing Pd Stacked Layer for nano-scale CMOSFETs (나노급 CMOSFET을 위한 Pd 적층구조를 갖는 열안정 높은 Ni-silicide)

  • Yu, Ji-Won;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.10-10
    • /
    • 2008
  • Silicide is inevitable for CMOSFETs to reduce RC delay by reducing the sheet resistance of gate and source/drain regions. Ni-silicide is a promising material which can be used for the 65nm CMOS technologies. Ni-silicide was proposed in order to make up for the weak points of Co-silicide and Ti-silicide, such as the high consumption of silicon and the line width limitation. Low resistivity NiSi can be formed at low temperature ($\sim500^{\circ}C$) with only one-step heat treat. Ni silicide also has less dependence of sheet resistance on line width and less consumption of silicon because of low resistivity NiSi phase. However, the low thermal stability of the Ni-silicide is a major problem for the post process implementation, such as metalization or ILD(inter layer dielectric) process, that is, it is crucial to prevent both the agglomeration of mono-silicide and its transformation into $NiSi_2$. To solve the thermal immune problem of Ni-silicide, various studies, such as capping layer and inter layer, have been worked. In this paper, the Ni-silicide utilizing Pd stacked layer (Pd/Ni/TiN) was studied for highly thermal immune nano-scale CMOSFETs technology. The proposed structure was compared with NiITiN structure and showed much better thermal stability than Ni/TiN.

  • PDF